
No. 1 i-Technology Magazine in the World

PLUS...

C#: IS THE PARTY OVER? PAGE 32

Setting Up a
Java Shop

Is Mobile Java
a Reality?

Magic Is
Golden

JDJ.SYS-CON.COM VOL.10 ISSUE:8

RETAILERS PLEASE DISPLAY
UNTIL SEPTEMBER 30, 2005

T H E W O R L D ’ S L E A D I N G i - T E C H N O L O G Y M A G A Z I N E J D J . S Y S - C O N . C O M

A framework comparison and internals tour

Reflections on
Debugging

3August 2005JDJ.SYS-CON.com

ll the myriad commentators who
monitor Internet technologies and
the i-Technology companies on
the NASDAQ doubtless have their

own private cluster of indicators that they
use to take a weather-check on the overall
state of the industry. For some, it’s as simple
as looking at the NASDAQ index level. This
(wholly understandable) approach is the one
adopted by SYS-CON’s own Roger Strukhoff,
who wrote recently:

 After going over 5000 at the height of the
 dot.com bubble, we all know that it plunged
 precipitously and consistently for the next 18
 months. Any hope of a quick recovery was
 dashed by 9/11, and then a new flicker of
 hope was extinguished when war came in
 March 2003. Since then, the NASDAQ’s most
 important numbers have been 2000, 2000,
 and 2000. The first of the three numbers
 represents the year of its peak, the second
 the level at which it settled, and the third the
 level at which it is apparently going to stay
 forever.

 For others, it’s more a matter of looking for
the “million tiny points of light” that together
will arguably provide more warning of better
times ahead than any mere stock index can
ever do. And this, you will have guessed, is
the tack I prefer to take.
 Recently I’ve become increasingly con-
vinced that, even though at this writing HP
has just cut 14,500 jobs and four research
projects from its HP Labs organization, those
points of light can be found everywhere – not
only in the i-Technology giants like Microsoft
and the middleweights like Macromedia but
also, perhaps the best indicator of all, among
the renewed trickle of start-ups.
 Consider Microsoft (or Sun, for that mat-
ter). Redmond has stepped up its pace of
hiring, adding nearly 4,400 employees world-
wide, and plans to continue expanding at
about the same rate in the year ahead. Sun,
in the meantime, has – as Ajit Sagar discusses
in this issue – started to put its cash hoard to
good use by buying SeeBeyond.
 Macromedia, poised to consolidate its
world-class product set into Adobe this fall,
if the stockholders of both companies give
the go-ahead next month, has proved that its

innovative and customer-focused approach
to Web technology results in ever-increasing
millions of users being empowered to create
truly sophisticated interactive content that
was never before possible.
 Just as it’s a great time to be a developer
– as JDJ’s Yakov Fain reports, “If last Septem-
ber I was calling the Java job market healthy,
today’s market is hot” – it is again a great
time to be running (or getting hired by!) a
start-up. There are several dozen companies
now whose upward trajectory has followed
that of founder Murugan Pal’s SpikeSource,
which “productizes” open source software.
SpikeSource began only a year ago by closing
a $12 million Series A funding round and has
not looked back since.
 Likewise consider how LinuxWorld
Magazine editorial advisory board member
Andy Astor has, with his co-founder Dennis
Lussier, recently launched EnterpriseDB to
leverage PostgreSQL’s community and BSD
license into a PostgreSQL-based database
that aims to out-Oracle Oracle (no less). A
start-up, however experienced its manage-
ment team, doesn’t just take aim at a mul-
tibillion-dollar company like Larry Ellison’s
powerhouse on a whim; on the contrary, like
SpikeSource, EnterpriseDB is convinced that
its timing is technologically propitious and
that its economic prospects are bright.
 On a smaller scale, JDJ’s Jason Bell has
in very hands-on fashion demonstrated his
faith in the future of i-Technology by found-
ing a B2B auction site for the airline industry.
It’s based on 100% Java and uses as many
open source libraries as possible so there
is no major financial outlay; even so, what
Bell is doing is lighting a candle rather than
cursing the darkness. “Let the NASDAQ stay
flat at 2000,” he is in effect saying, “but that
doesn’t mean the time is not ripe for an agile
new technology enterprise to flourish.”
 When a million Murugan Pals, Andy As-
tors, Dennis Lussiers, Jason Bells, and Yakov
Fains light such candles simultaneously,
the glow soon becomes visible to even the
gloomiest of prognosticators.
 As the old joke goes, “Prediction is very
difficult, especially if it’s about the future.” But
some of us – and I am one – are convinced.
The technology bounce back has already
begun, and is in full flow all around us.

From the Group Publisher

It’s Official:
Welcome to the

‘Technology Bounce Back’
 Editorial Board
 Desktop Java Editor: Joe Winchester
 Core and Internals Editor: Calvin Austin
 Contributing Editor: Ajit Sagar
 Contributing Editor: Yakov Fain
 Contributing Editor: Bill Roth
 Contributing Editor: Bill Dudney
 Contributing Editor: Michael Yuan
 Founding Editor: Sean Rhody

Production
 Production Consultant: Jim Morgan
 Associate Art Director: Tami Lima
 Executive Editor: Nancy Valentine
 Associate Editor: Seta Papazian
 Research Editor: Bahadir Karuv, PhD

Writers in This Issue
Calvin Austin, Daniel Brookshier, Glen Cordrey,

Rob Davies, Patrick Fendt, Jeremy Geelan, Sachin Hejip,
Phil Herold, Duncan Jack, Onno Kluyt, Rhagu Kodali,

Brad Micklea, Ajit Sagar, Dan Stieglitz, James Strachan,
Geoff Vona, Pete Whitney, Joe Winchester, Michael Yuan

To submit a proposal for an article, go to
http://jdj.sys-con.com/main/proposal.htm

Subscriptions
For subscriptions and requests for bulk orders, please send your

letters to Subscription Department:

888 303-5282
201 802-3012

 subscribe@sys-con.com

Cover Price: $5.99/issue. Domestic: $69.99/yr. (12 Issues)
Canada/Mexico: $99.99/yr. Overseas: $99.99/yr. (U.S. Banks or

Money Orders) Back Issues: $10/ea. International $15/ea.

Editorial Offices
SYS-CON Media, 135 Chestnut Ridge Rd., Montvale, NJ 07645

Telephone: 201 802-3000 Fax: 201 782-9638

Java Developer’s Journal (ISSN#1087-6944) is published monthly

(12 times a year) for $69.99 by SYS-CON Publications, Inc., 135
Chestnut Ridge Road, Montvale, NJ 07645. Periodicals postage

rates are paid at Montvale, NJ 07645 and additional mailing
offices. Postmaster: Send address changes to: Java Developer’s
Journal, SYS-CON Publications, Inc., 135 Chestnut Ridge Road,

Montvale, NJ 07645.

©Copyright
Copyright © 2005 by SYS-CON Publications, Inc. All rights reserved. No

part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including

photocopy or any information storage and retrieval system, without
written permission. For promotional reprints, contact reprint

coordinator Dorothy Gil, dorothy@sys-con.com. SYS-CON Media and
SYS-CON Publications, Inc., reserve the right to revise, republish and

authorize its readers to use the articles submitted for publication.

Worldwide Newsstand Distribution
Curtis Circulation Company, New Milford, NJ

For List Rental Information:
Kevin Collopy: 845 731-2684, kevin.collopy@edithroman.com
Frank Cipolla: 845 731-3832, frank.cipolla@epostdirect.com

Newsstand Distribution Consultant
Brian J. Gregory/Gregory Associates/W.R.D.S.

732 607-9941, BJGAssociates@cs.com

 Java and Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc., in the United States and
other countries. SYS-CON Publications, Inc., is independent of
Sun Microsystems, Inc. All brand and product names used on
these pages are trade names, service marks or trademarks of

their respective companies.

Jeremy Geelan is

group publisher of

SYS-CON Media and

is responsible for the

development of new

titles and technology

portals for the

firm. He regularly

represents SYS-CON

at conferences and

trade shows, speaking

to technology

audiences both in

North America

and overseas.

jeremy@sys-con.com

Jeremy Geelan

A

5August 2005JDJ.SYS-CON.com

AUGUST 2005 VOLUME:10 ISSUE:8

contents
JDJ Cover Story

12

JDJ (ISSN#1087-6944) is published monthly (12 times a year) for $69.99 by
SYS-CON Publications, Inc., 135 Chestnut Ridge Road, Montvale, NJ 07645.
Periodicals postage rates are paid at Montvale, NJ 07645 and additional
mailing offi ces. Postmaster: Send address changes to: JDJ, SYS-CON
Publications, Inc., 135 Chestnut Ridge Road, Montvale, NJ 07645.

Features

FROM THE GROUP PUBLISHER

It’s Offi cial: Welcome to the
‘Technology Bounce Back’
by Jeremy Geelan.................................3

JAVA ENTERPRISE VIEWPOINT

The G.E. of Software
by Ajit Sagar.................................6

STRATEGY

Using Metrics to Optimize J2EE
Application Performance in
Production
The payoff is substantial
by Brad Micklea and Geoff Vona.................................8

INFRASTRUCTURE

Setting Up a Java Shop
Building better software faster
by Glen Cordrey.................................20

DESKTOP JAVA VIEWPOINT

J2SE and Open Source –
Living Together in Perfect Harmony
by Joe Winchester.................................50
TECHNIQUES

FrameResizer
Resizing windows
by Phil Herold.................................52
DESIGN

Interface All Boundaries
Providing tangible benefi ts to your application
by Pete Whitney.................................56
SOFTWARE DESIGN

Magic Is Golden
Pulling rabbits out of hats
by Daniel Brookshier.................................60
JSR WATCH

JCP Launches New Program
First constellation of Star Spec Leads takes shape
by Onno Kluyt.................................62

WIRELESS

Is Mobile Java a Reality?
Some casual observations from JavaOne 05
by Michael Yuan.................................22
CORE AND INTERNALS VIEWPOINT

C#: Is the Party Over?
by Calvin Austin.................................32
DIAGRAMS

Observed Benefi ts of the
Unifi ed Modeling Language
The UML is designed to serve you
 by Duncan Jack.................................34
TECHNIQUES

Refl ections on Debugging
Matching problem patterns to past issues
 by Sachin Hejip.................................38
SPECIFICATIONS

The Simplicity of EJB 3.0
A step in the right direction
 by Rhagu Kodali.................................46

by Patrick Fendt

AOP
SOA + EDA =

Open Source ESB: ServiceMix(*)
by Rob Davies and James Strachan

26
A framework comparison and internals tour

A Strategy for Aspect-Oriented
Error Handling

by Dan Stieglitz

42

Technology
Update

JDJ.SYS-CON.com6 August 2005

t JavaOne this year, one of the
biggest announcements (albeit
this one had nothing really to do
with Java) was the acquisition of

SeeBeyond by Sun Microsystems. It looks
like Sun is putting its cash, which it has
plenty of, to good use. As we have seen
over the last decade of Java, Sun is not re-
ally a poster child for making money from
software sales. The SeeBeyond acquisition
seems to indicate a shift in paradigm, an
attempt to drive a stake into another tier
(SOA) of the multi-tier enterprise applica-
tion stack, a way to expand the customer
base, and perhaps make some money on
software.
 The market is developing in an interest-
ing way for vendors who are providing the
stack around Java as the platform is being
increasingly applied to enterprise solu-
tions. Currently if you look at the market
for J2EE (or J EE as the old Java pig with a
new lipstick is now called), the application
server space has consolidated around a
handful of vendors – IBM, BEA, Oracle,
Sun, and JBoss. Of these, IBM and BEA are
actually the ones that have install bases,
which have been used for enterprise ap-
plications in large corporations. Oracle is
late to the market and is trying to play the
catch-up game. JBoss has not yet made
a dent in large organizations. And Sun’s
app server (rebranded for the nth time
to “Java System Application Server”) has
really made no dent in the market, in line
with all the previous incarnations. Others
such as Pramati are looking at partnering
with SIs (system integrators) instead of
competing directly in the market.
 Besides having the best technology, the
real play comes down to owning the right
pieces of the stack. What is the solution
stack on which a company will build port-
folios of Java enterprise applications? Let’s
start from the bottom of the stack. First of
all, there is the hardware. The OS runs on
the hardware. The database runs on the
OS. Software platforms, in this case Java,
run on the OS. The application server
runs on the software platform. The app
server typically integrates through three
main mechanisms – synchronous APIs
(such as RMI.IIOP), messaging, or HTTP/

SOAP (Web services–based integration).
Other products, such as a BPM engine,
Portal Server, Business Rules Engine, etc.,
run on the application server foundation.
And finally, a Web server makes the ap-
plication accessible on the Internet.
 Of course, this is a simplified view, and
there are many more building blocks that
lay the foundation for the architecture.
But let’s go with this picture in mind and
look at the top players in the market. BEA
had grabbed the majority of the market
share since the early days of Tengah and
WebLogic by staying ahead of the tech-
nology and providing timely optimization
while the Java standards were catching up
to the market demands. They grabbed the
market opportunity, but are currently be-
tween a rock and a hard place. The part of
the stack that BEA owns is floating above
the messaging infrastructure. Basically,
they don’t have any products that occupy
the DB, OS, or hardware tiers. JBoss is an-
other one in this position, but being open
source puts them into a slightly different
situation. Oracle does own a substantial
chunk of the stack by virtue of their obvi-
ous presence in the DB tier.
 Now let’s take a look at IBM. To me,
IBM is the G.E. (General Electric) of
computing. They own all the pieces of the
stack, from the monolithic mainframes
that will live on forever to the smallest
devices, to the integration technologies
(remember the recent acquisition of
Ascential), to the professional services
you need to deploy and manage large
enterprises’ IT. They have it all – a true
one-stop shop. IBM owns their clients
– IT and process. Even Microsoft, which
is always the target for a monopoly, does
not own it all. Scary isn’t it? In many ways,
with IBM’s foothold in open source, they
own a large part of Java technology that is
in deployment.
 So to take the G.E. analogy, with IBM’s
offerings, you could pretty much build/
buy everything from cars to refrigerators
to razor blades from big blue. Eventually
others will have to partner, merge, and/or
reincarnate to compete successfully. I
always wonder where BEA will go next. To
Oracle or to Sun?

Java Enterprise Viewpoint

Ajit Sagar
Contributing Editor

The G.E.
of Software

A

President and CEO:
 Fuat Kircaali fuat@sys-con.com

Vice President, Business Development:
 Grisha Davida grisha@sys-con.com

Group Publisher:
 Jeremy Geelan jeremy@sys-con.com

Advertising
Senior Vice President, Sales and Marketing:

 Carmen Gonzalez carmen@sys-con.com

Vice President, Sales and Marketing:
 Miles Silverman miles@sys-con.com

Advertising Sales Director:
 Robyn Forma robyn@sys-con.com

National Sales and Marketing Manager:
 Dennis Leavey dennis@sys-con.com

Advertising Sales Manager:
 Megan Mussa megan@sys-con.com

Associate Sales Manager:
 Dorothy Gil dorothy@sys-con.com

Editorial
Executive Editor:

 Nancy Valentine nancy@sys-con.com

Associate Editor:
 Seta Papazian seta@sys-con.com

Production
Production Consultant:

 Jim Morgan jim@sys-con.com

Lead Designer:
 Tami Lima tami@sys-con.com

Art Director:
 Alex Botero alex@sys-con.com

Associate Art Directors:
 Abraham Addo abraham@sys-con.com
 Louis F. Cuffari louis@sys-con.com

Assistant Art Director:
 Andrea Boden andrea@sys-con.com

Video Production :
 Frank Moricco frank@sys-con.com

Web Services
Information Systems Consultant:

 Robert Diamond robert@sys-con.com

Web Designers:
 Stephen Kilmurray stephen@sys-con.com
 Vincent Santaiti vincent@sys-con.com

Accounting
Financial Analyst:

 Joan LaRose joan@sys-con.com

Accounts Payable:
 Betty White betty@sys-con.com

Accounts Receivable:
 Gail Naples gailn@sys-con.com

SYS-CON Events
President, SYS-CON Events:

 Grisha Davida grisha@sys-con.com

National Sales Manager:
 Jim Hanchrow jimh@sys-con.com

Customer Relations
Circulation Service Coordinators:

 Edna Earle Russell edna@sys-con.com
 Linda Lipton linda@sys-con.com

JDJ Store Manager:
 Brunilda Staropoli bruni@sys-con.com

Ajit Sagar is a

principal architect

with Infosys Technologies,

Ltd., a global consulting

and IT services company.

He has been working with

Java since 1997, and has

more than 15 years’

experience in the IT industry.

During this tenure, he

has been a programmer,

lead architect, director of

engineering, and product

manager for companies from

15 to 25,000 people in size.

Ajit has served as JDJ’s J2EE

editor, was the founding

editor of XML-Journal, and

has been a frequent speaker

at SYS-CON’s Web Services

Edge series of conferences.

He has published more

than 75 articles.

ajitsagar@sys-con.com

JDJ.SYS-CON.com8 August 2005

espite the increasingly wide-
spread adoption of J2EE for en-
terprise applications, measuring
their performance in produc-

tion continues to be a black art. Without
knowing what to look for, many people
measure anything that seems useful,
which soon results in an overloaded sys-
tem and reams of meaningless metrics
data. It’s tempting to just throw up your
hands and start making system changes
based mainly on hunches.
 This article provides a strategy for
measuring performance in production.
Starting with an explanation of some ba-
sic metrics that express the performance
of a J2EE application, we’ll apply these to
a model of a J2EE system, showing how
these metrics interact in different areas
of the system. From here we will drill-
down to discuss the nuts and bolts of
gathering metrics from each type of J2EE
component, from the client Web browser
through to the back-end database.
Finally, we’ll uncover the quality and cost
of different metrics and how to handle
that tradeoff so that minimal overhead is
imposed on the system being measured.

Basic Metrics
 Some of the most basic metrics for a
J2EE system (or any system really) are:
• Response Time (R)
• Throughput (X)
• Resource Utilization (U)
• Service Demand (D)

 Response Time is the best overall
indication of your end-users’ experience.
It has a much higher variation than the
other metrics so it is essential to under-
stand the distribution of response time.
If most users experience two-second
response times but 10% are getting 10
second response times, for example, you
need to know this in order to assess and
fix the problem.
 Throughput, the number of transac-
tions executed by the system over a

period of time, is a good indication of the
system’s ability to handle load.
 Resource Utilization, or how heav-
ily a particular system element is being
used, is the easiest metric to understand.
It’s not necessarily the most useful
for determining system performance
because only the utilization of contended
resources has a significant impact on
performance. We have found it more use-
ful to define a new metric called Service
Demand, calculated by the following
formula:

 Service Demand = Utilization of the

resource / Throughput

 Service Demand looks at resources
in terms of the demands being put on
them. This gives us a clear idea of the
utilization of a resource as the users’
demand for it increases.

Interrelating Metrics
 These metrics are related, as shown by
Figure 1. Understanding this relationship
is central to building a model of J2EE
performance.
 The first thing to notice is that
throughput and response time are often
at odds. For an interactive application in
production, we typically want to maxi-

mize throughput, as long as response
time is at or below some threshold. For
example, we may find we can achieve a
maximum throughput of 100 transac-
tions per second while keeping response
time at or below two seconds.
 Figure 1 also shows that resource utili-
zation typically controls system behavior.
It is resource contention that causes the
dramatic drop in throughput and the
commensurate rise in response time that
marks the Buckle Zone. The effect of the
Buckle Zone is a severe drop in applica-
tion performance, due to the system
spending most of its time managing
resource contention, rather than servic-
ing requests.
 It’s important to see how your applica-
tion behaves at each of these three zones
and the specific metric values that cause
the system to shift from light to high load
to buckle zone. This will be particularly
useful for setting alerts in your produc-
tion monitoring tool.

A Model for J2EE Systems
 Let’s fit these metrics into a model of
a J2EE system that has four main pro-
cesses, illustrated by Figure 2. Client Han-
dling includes the originating requests
and the sessions those requests may be
tied to. Execution Management is where

Strategy

by Brad Micklea
and Geoff Vona

Using Metrics to Optimize J2EE
Application Performance in Production

D

Brad Micklea is a product

manager at Quest Software.

Brad has helped companies

improve the performance of

their Java and J2EE applications

for over three years.

The payoff is substantial

Geoff Vona is a development

manager at Quest Software.

A Java programmer since

early 1996, Geoff’s current

work focuses on J2EE

performance monitoring

and diagnostics. Figure 1 The effects of load on resource utilization, throughput and response time

9August 2005JDJ.SYS-CON.com

requests are queued before being as-
signed to execution threads. Applications
includes both your code and all the stan-
dard J2EE components. Services include
anything that connects your application
to the outside, such as JDBC and JMS. Of
course, all these elements run in a Java
Virtual Machine (JVM) which, in turn,
is using the resources of the operating
system such as its processor, memory,
disks, and network connectivity.
 Figure 2 also shows how the metrics
discussed earlier can be measured at
each level. We’ll need to measure and
understand response time dispersion at
the client-handling level, the applica-
tion code level, as well as for services like
JDBC. Throughput is most important
at the client handling level – we have to
understand how much user load our
system can handle. Resource utilization
is measured at many points in the system
(OS, execute threads, services, etc) so that
we can correlate the information and see
how different elements in the system are
affecting each other.

Points of Measurement and Overhead
 There are no free metrics. Measuring
something in real time always adds some
overhead; the key is to make intelligent
choices about what information to col-
lect while keeping the overhead we’re
willing to incur in mind. The best way to
determine the overhead of a measure-
ment is to use the Service Demand cal-
culation defined earlier. It is through that
lens that we will now look at how we can
most effectively and efficiently gather
measurements from the J2EE system.
Figure 3 illustrates the many possible
measurement points in a J2EE system.
 There are two methods for measuring
client response time: browser scripting
and injection of synthetic transactions.
Browser scripting is usually imple-
mented through JavaScript in the HTML
pages returned to users. While the best
measure of the user’s experience, it does
present several significant difficulties:
it’s very hard to measure all the clients
reliably; deployment and maintenance
of the scripting code for those pages can
become difficult and tedious.
 Synthetic transactions address most
of these shortcomings and have become
more commonly used. The idea is to
inject synthetic or scripted user trans-
actions into the system with some
tool. These transactions can be easily
measured and give a good approximation
of what the users are experiencing. It’s
important to realize their limitations – un-

less the injector is placed near the end
users, rather than just outside or inside
the firewall, it cannot provide data on the
wider network effects; also, creating real-
istic synthetic transactions does require
a fairly detailed knowledge of user/site
interaction and the patience to accurately
model this interaction. However, the con-
trol that synthetic transactions provide
overshadows these limitations.
 Operating system (OS) metrics, famil-
iar to most developers, will be gathered
from machines throughout the J2EE
system. Seeing the shifting patterns of
CPU, memory, and disk usage on the
various tiers of the system greatly aids
understanding. But to build that data
into a useful J2EE system model, you
have to be able to accurately associate
system metric information with applica-
tion container and application code
data at specific intervals in time. Only by
doing this can you draw a picture of the
complex interactions between the ap-
plication, its application server container,
and the underlying system.
 Metrics from other points, such as Web
servers and databases, can be treated in
the same way as OS metrics. Unfortu-
nately, there’s no standard for them; each
vendor provides a metrics interface that
it feels is appropriate for its offering.

J2EE and JVM Measurement
 Operating system metrics should also
be correlated with Java Virtual Machine
(JVM) performance. JVMs provide some
information (largely heap usage) at al-
most no cost to most application servers,
generally through JMX. For more detailed
information, turn to the Java Virtual
Machine Profiling Interface (JVMPI),
which exposes things like object alloca-
tions/deallocations, thread locks and
call stacks, method and line execution
times. However, JVMPI’s main drawback
is that it is a very intensive interface

that imposes a lot of overhead in the
system; we cannot recommend its use in
production systems. The jury is still out
on whether the new Java Virtual Machine
Tool Interface (JVMTI) will be appropri-
ate for production use.
 Application server metrics are gener-
ally quite detailed within the major
vendors offerings. Though each server is
different, they all include information on
the following:
• Response time and utilization for serv-

lets, JSPs, and EJBs
• Caching for EJBs, JDBC connections,

and other service elements
• Utilization of services like JDBC, JMS,

JCA, and JNDI
• Transactional information (# of roll-

backs and commits)
• Threading/queueing data (# of active

threads, # of waiting requests)
• JVM metrics (heap)
• General configuration information

 These metrics are important because
they can provide the response time,
throughput, and utilization information
you need to complete your J2EE perfor-
mance model. Also, your ability to gather
this data for either the complete system,
or portions of it, means you gain a lot of
flexibility in your analysis. Of course as is
often the case with powerful and flexible
systems, navigating the expanse of data
can be cumbersome, especially since it is
not by default tied to specific application
transactions or requests.
 BEA WebLogic exposes its metrics
through JMX. This standards-based ap-
proach can make it much easier for you
to gain access to this data through an
interface other than the WebLogic con-
sole. WebLogic’s metrics themselves are
quite strong; however, there is a notable
lack of information on Response Time for
EJB methods (though this information is
provided for servlets).

 Figure 2 Model of J2EE system with metrics applied

JDJ.SYS-CON.com10 August 2005

 IBM WebSphere in version 4.x used
their proprietary PMI interface, which
provided slightly more complete metrics
than WebLogic, but at the expense of
J2EE compliance (i.e., it is not JMX-
based). For version 5.x of WebSphere, the
metrics are all available either through
PMI or through JMX. One other nice
feature of the WebSphere interface is
the ability to control the detail received.
PMI can be set to report back data at
none, low, medium, high, or maximum
level (note that maximum level turns on
JVMPI).
 Oracle’s application server provides
metrics through its DMS servlet. Its
data includes information about the
performance of JVMs, JServ, JDBC, and
EJBs, but is not as complete as WebLogic
or WebSphere. The JBoss application
server makes its performance metrics
available through JMX. Its metric set is
relatively complete, and includes data
on both Tomcat and the application
server.
 Fortunately, gathering this data from
the application servers does not generally
cause a lot of overhead. Though you can’t
turn off the MBean data collection in
WebLogic that provides the JMX metrics,
the overhead is usually not an issue un-
less you’re doing a lot of remote MBean
queries. WebSphere’s PMI interface
allows you to turn off data collection,
which obviously reduces overhead. How-
ever, our tests haven’t shown a great deal
of difference between the middle three
detail levels.
 Protocol sniffers can be another
source of valuable data. These work by
reverse-engineering the protocol that
passes between clients and servers. This
nearly touchless interaction requires
almost no overhead to perform. The data

that is provided can be extremely valu-
able, but it’s almost always very detailed
and deep in nature, demanding a great
deal of expertise on the part of the user
to interpret. Also, these solutions do tend
to be quite expensive due to the large
amount of valuable data they provide
with little overhead. If you can afford
them and know how to effectively use the
information they provide, they are often
a good investment.
 The final data collection strategy is
application code instrumentation, of
which there are two types: custom and
automatic. Custom instrumentation is
handled entirely by the developer by
inserting measurement code into the
source code or generated bytecode to
gather the metrics they want (typically
J2EE component- or method-level timing
information). This information is then
sent on to a centralized recorder that the
developer would also have to write. This
a very complex undertaking and one that
most companies prefer to avoid through
the purchase of a transactional J2EE
diagnostic tool.
 There are several ways to do automatic
instrumentation, but regardless of how
it’s done it saves time by automating the
addition of performance measuring code
to the generated bytecode of the applica-
tion classes. Vendors of performance
tuning tools have spent considerable
time and effort optimizing the overhead
of their automatic instrumentation, so
it really does offer the lowest possible
overhead, even over a custom solution.
Automatic instrumentation can also be
applied to any application quickly and
easily, while custom instrumentation
requires considerable time and effort
on the part of the developers to add the
necessary code.

 Regardless of how this data is gath-
ered, it provides an excellent view into
your application code – something that
none of the other metrics techniques can
do. Typically you can do some or all of the
following metrics on a J2EE component-,
class- or method-level granularity:
• Call counts
• Time spent in a method (Exclusive

Time)
• Time spent in a method and all the

methods it calls (Cumulative Time)
• Exceptions thrown
• Bytes transferred / serialized in RMI
• Stack information

 This deep application information is
essential for quickly and correctly diag-
nosing many code-related performance
problems. It can help you to determine
where the application is being misused
or is breaking down, as well as easily
isolate the method-level bottleneck that
may be choking your application under
production load.

Applying It to Your J2EE Application
 Unfortunately, there is no single model
that will work with all J2EE systems – each
is, to some extent, custom and must be
dealt with individually. Investigating
performance issues in production means
working through a systematic analysis for
each case.
 Begin by ensuring that the application
stakeholders are clear on what level of
performance they require. Then decide
what information you will need to evalu-
ate the current system performance. This
is where you need to strike a balance
between the amount of information
you want and the amount of overhead
you can incur. From that point you can
move on to deciding how to gather the
information you need and what kind of
a performance model your system will
adhere to.
 All of this does require effort – you’ll
have to be diligent about controlling
system variables by locking down the
environment and re-baselining to ensure
that you’re not measuring on a shifting
foundation. But the payoff from this effort
is substantial. With these guidelines and
common sense, you will be able to release
an application that exceeds its perfor-
mance expectations and is more reliable
as well. All of this spells greater applica-
tion confidence, which is something any
business would love to have more of.

Strategy

 Figure 3 Measurement points in a J2EE system

JDJ.SYS-CON.com12 August 2005

 Aspect-Oriented Programming (AOP) is undeniably one of the

coolest things to happen in the software technology in a

long time. AOP has been called the “third dimension of

programming” (copyright by Frank Sauer, Technical Resource

Connection, Inc.) and has tremendous power in dynamically

inserting logic into pre-existing programs. It can help solve some

of the key problems (technology gaps, so to speak) still facing IT

organizations. More specifi cally, AOP is now beginning to bridge

the gap in three areas of software technology:

 Separation of concerns – so developers can focus
 on the business logic they need to design, imple-
 ment, and test.

2. Making IDE-type tooling simpler and more standards-
based (e.g., for Model-Driven Architectures, code-genera-
tion, deployment artifacts-generation, etc.).

3. Runtime management of software systems – including
profiling, auditing, and trouble-shooting.

 The purpose of this article is to give the reader an understand-
ing of the various AOP technologies available today and put AOP
in perspective so it’s judiciously used. But fi rst let me give you a
brief overview of AOP and AOP terminology. The source code for
this article can be downloaded from www.jdj.sys-con.com.

AOP Overview and Terminology
 OOP took the fi rst step toward separating concerns in let-
ting software designers compartmentalize their code – both
logically and physically. OOP also supports polymorphism so
designers can generalize their code in such a way that func-
tionality can be applied (and hence reused) to various sub-
types without knowing in advance which specifi c sub-type is
being used. This aids developers in designing more extensible
and manageable software, making their code more reusable.
 AOP takes this concept a step further and lets this separa-
tion of concerns be applied easily to a class of functions that

tend to permeate a software system; examples are logging,
security, transactions, exception handling, and monitoring.
These are examples of what we call crosscutting concerns,
and they tend to be extremely critical to the success of a soft-
ware system – especially over its lifetime. Yet, until AOP came
on the scene, these crosscutting concerns caused enormous
ineffi ciencies, inconsistencies, and bugs, and as a result,
these systems typically fell short of expectations on quality,
manageability, and extensibility.
 AOP technology introduces several new terms to our soft-
ware technology vocabulary. In essence, it allows completely
independent Java methods (advice) to intercede transparently
and be executed while running pre-existing Java application
code – at well-defi ned points called join points. Examples of
join points are before and after method calls, or when a particu-
lar object is instantiated, or when a particular member variable
is referenced. The way developers specify which join points are
relevant is via a pointcut expression that refers to one or more
join points in a particular software system or subsystem. A
pointcut could, for example, apply to a collection of Java classes
in a directory hierarchy, a JAR, or an EAR, and the expression
typically takes advantage of your class naming conventions
and uses a regular-expression-like syntax. Finally, an aspect is
a more general term referring to one or more related advice
functions. An aspect can then also serve as a focal point for
specifying the pointcut(s) that relate to the aspect. What follows
are some commonly used AOP terms:

Join point: a well-defined point in programs where AOP
 functions (advice) can intercede and affect execution

Advice: the action taken by the AOP framework at a
 particular join point. This functionality
 (implemented via a Java method) will transpar-
 ently intercede and be executed while executing
 your Java application code. Examples of differ-
 ent types of advice are: before, after, and around

Aspect: a general term referring to a collection of one
 or more related advice methods, typically
 implemented in a single Java class, and
 class, and potentially accepting join point
 context information as a parameter to those
 advice methods

Patrick Fendt is a presales

technical consultant at BEA

Systems. He spent the fi rst

seven years of his career

designing and developing

high-performance middleware

at IBM, Scientifi c Software,

and S2 Systems. He has been

in the technical/pre-sales

organization at BEA for over

six years – serving in various

roles. Patrick graduated with

honors from Georgia Institute

of Technology with a BS in

computer science

pfendt@bea.com

by Patrick Fendt

A framework comparison and internals tour

Feature

1.

13August 2005JDJ.SYS-CON.com

Pointcut: the expression that specifies which join
 points will be affected by one or more
 aspects

Introductions: a more intrusive type of intercession that
 modifies the structure/type of your (Java
 application) classes, for example, by
 implementing a new interface or adding
 a new member variable

Mixin: a mixin refers to adding new class(es) to a
 pre-existing class

Weaving: the application/activation of an advice
 across one or more pointcuts so that the
 advice will be executed when the join points
 are encountered

Target: the application object being advised (affect-
 ed by the aspects) at any point in time

Interceptor: an aspect with only one advice method
 named “invoke”

AOP Use-Cases
 Now let’s briefly consider some typical use-cases for AOP. Can-
didate functionality would be any horizontal/crosscutting type
functionality (required across multiple applications and multiple
subsystems) that architects and/or application developers are
often faced with implementing. Some common examples are:
1. Logging, tracing, auditing
2. Security authentication and authorization
3. Rules engine
4. Testing and test-harness support
5. Persistence and O/R mapping
6. Caching: caches objects transparently to the application

developer
7. Transactions support
8. Synchronization and thread safety
9. Exception handling

 As you can imagine, implementing these kinds of system-
wide features once, perhaps in a single class or subsystem,
would have tremendous ROI and cost-savings benefits for IT
organizations. It should be noted here that the application
infrastructure (middleware) addresses many of the crosscut-
ting requirements listed above; however, some of them are
only partially addressed by middleware (e.g., one example is
testing), and standards-based middleware is currently largely
API-driven.

AOP Technologies and Frameworks Comparison
 AOP frameworks can be classified according to the technolo-
gies they employ to implement AOP. Fundamentally, AOP imple-
mentations differ based on how they approach and implement
the following:
1. Join points and pointcuts
2. Aspects
3. Weaving (build-time and/or runtime)
4. Tooling: level of IDE integration and/or monitoring

 What follows is a description of these technologies and a
mapping of which ones the major AOP frameworks use. The AOP

frameworks we’ll consider are: AspectJ, AspectWerkz, Spring, JBoss
AOP, and a homegrown approach (that we’ll call DARAC short for
Dynamic AOP using Reflection, Annotations, and Controls) that I
developed to illustrate the advantages of implementing AOP using
annotations, reflection, JMX, and Java controls.
 Note that Controls refers to an Open Source technology for reus-
ing Java that was introduced by BEA Systems as part of the Apache
Beehive project. For more information, see the WLDJ article from
November 2004 entitled “Open Source Technologies” at http://
wldj.sys-con.com/read/47092.htm.
 Finally, I should point out that DARAC is presented here simply
for illustrative purposes. DARAC wasn’t designed to be a produc-
tion-ready implementation.
 Now we’ll compare and contrast the major AOP frameworks,
and describe the functionality and internals of the DARAC ap-
proach for two reasons:
1. DARAC will help us understand one perspective on how AOP

can be made dynamic and how AOP relates to other Java tech-
nologies

2. It’s informative and beneficial for architects to understand the
internal mechanisms of AOP so that they can make a more
intelligent decision on which AOP framework best suits their
needs.

AspectJ (version 1.2)
 AspectJ is a code-based and pre-compiling-based approach to
AOP. In other words, the aspects and pointcuts are expressed in
a non-Java source file, and then a pre-compiler is run against the
code to generate the standard Java artifacts required for a typi-
cal ANT-based build. For developers who are willing to take this
approach, it obviates the need for a separate XML file to express
pointcuts, and it is a more centralized approach where the aspects
and pointcuts can be combined in a single file. However, it comes
at the cost of introducing language extensions and intruding on
your build process. To configure which aspects apply to the subsys-
tem you’re working on, you specify a list (a .lst file) to the compiler
or IDE. As a result, with respect to weaving, AspectJ is oriented
toward build-time weaving (there’s no inherent support for turning
aspects on/off at runtime). Finally, IDE support in AspectJ is fairly
advanced – including AOP support via an AJDT Eclipse plug-in.
This plug-in supports the following features:
1. The AspectJ compiler automatically detects syntax, grammar, or

spelling errors in your aspect code during development/editing
2. It calls out what aspects and advice are in effect
3. It outline window shows what application code is affected by all

the advices in effect
4. All affected join points are highlighted to show that an advice is

in effect for them

 This first IDE-integration feature (development-time syntax
and grammar checking) is perhaps the strongest argument for
using AspectJ as opposed to other AOP frameworks.

AspectWerkz (version 2)
 AspectWerkz takes a significantly different approach to AOP
than AspectJ. It doesn’t rely on a pre-compiler, but instead makes
use of either annotations or an XML file (aop.xml) to specify
pointcuts. The underlying intercession technology is JVM-based
bytecode manipulation – either at build-time or load-time
(though they also support an older proxy-based approach similar
to Spring AOP).
 Since they use JVM-based intercession, the aspects themselves
can be normal Java classes, and the advice is implemented as

JDJ.SYS-CON.com14 August 2005

methods on those aspect classes. AspectWerkz also leverages
the aop.xml file to specify what aspects are being applied to a
particular system/subsystem. With regard to weaving, Aspect-
Werkz supports both build-time and runtime. Note that when
I refer to runtime weaving, I’m implying the ability to turn AOP
on/off at runtime (preferably on a per-pointcut and/or per-
aspect basis). Again, AspectWerkz achieves this via JVM-level
functionality (e.g., JVMPI or JVMTI and a “hotswap” archi-
tecture). For IDE support, AspectWerkz provides some basic
NetBeans 3.6 support (to support weaving); it also provides an
Eclipse plug-in supporting the following features:
1. Javadoc-style annotation support for Java 1.4-based AOP

using AspectWerkz in annotations mode
2. Logging/tracing of AspectWerkz-specific information
3. Highlighting join points (in the editor) with the ability to

jump to the applicable advice code

 In summary, AspectWerkz is a very powerful AOP
framework. One of the only drawbacks would be the lack of
development-time error checking with respect to pointcut
declarations, and the only framework that fully supports
this would be AspectJ. The good news is that AspectJ and
AspectWerkz are merging their technologies. One of the
first deliverables is an offshoot of AspectJ that provides an-
notations-based AOP under the project name @AspectJ.

Spring AOP (version 1.2)
 Spring AOP provides a dynamic proxy-based approach
to implementing AOP (using Java reflection APIs). While this
approach makes introductions more difficult to implement,
it has one important advantage – proxy-based AOP is 100%
pure Java-based. In other words, there are no dependencies on
either a pre-compiler or any JVM-specific features.
 One disadvantage to this approach is that the target applica-
tion classes must implement some sort of interface to be sup-
ported by this dynamic proxy-based approach. However, this
restriction is easily overcome by using the CGLIB Open Source
toolkit (CGLIB is used to extend Java classes and implement
interfaces at runtime) to extend the Java Proxy mechanism to
application classes without interfaces. Moreover, doing this is
simple and well documented.
 With regards to specifying aspects and pointcuts, Spring
AOP relies more heavily on XML – using the springconfig.xml
file for both Spring Framework and Spring AOP configuration
information. Advice is specified via Java code in one or more of
the following types of classes:
• MethodInterceptor: implements around advice – adheres to

AOP Alliance signature for method interception (see http://
sourceforge.net/projects/aopalliance for details)

• Advice: any advice class implementing one of the basic
Spring AOP advice interfaces (before, after-returning, and
throws)

• Advisor: encapsulates an aspect with both a Java class and

an associated XML-based definition by specifying both a
pointcut and the associated advice

 Note that both pointcuts and advice are implemented
in concert with Spring’s IoC (Inversion of Control) frame-
work. This is good news for those already familiar with the
framework, and Spring AOP is essentially implemented as
an extension to this IoC core functionality. Spring AOP is
also extensible in that custom pointcut classes and custom
advice types are supported. Moreover, because of its integra-
tion with the Spring framework, Spring AOP comes with
some level of built-in transaction and security support, and
other types of aspects would also be easier to implement if
support already exists in the base framework. With respect
to weaving, Spring supports the runtime approach. Finally,
it should be noted that BEA recently announced a level of
commercial support for the Spring framework.

JBoss AOP (version 1.1)
 JBoss is fairly similar in general to the AspectWerkz frame-
work. It supports both annotations-based and XML-based
approaches to specifying pointcuts, advice, and aspects (in-
cluding a bind primitive to bind a pointcut expression to an
interceptor method or advice/aspect class implementation).
Moreover, both AspectWerkz and JBoss AOP support explicit
binding of pointcuts to advice.
 In JBoss, with the XML-based approach, pointcuts, advice,
and aspect mappings are specified in the JBoss AOP XML file
(jboss-aop.xml). With the annotations-based approach, you
can use either Java 1.4 or Java 1.5. A JBoss aspect can be any
Java class (but it must have an empty constructor).
JBoss AOP also supports a scope primitive associated with
aspects and interceptors. The scope specifies how many
instances of the aspect class will be instantiated per-JVM,
per-class, or per-instance.
 And like the other frameworks, JBoss AOP supports de-
pendency injections, introductions, and mixins. With respect
to weaving, JBoss AOP supports hot deployment of aspects
(and runtime weaving). This means that advice bindings can
be added or removed at runtime for the target classes that
were included by one of the following primitives: pointcut,
bind, and/or prepare. Moreover, the JBoss management
console can be used to effect the runtime weaving.
 JBoss AOP provides an Eclipse plug-in with the following
features:
• Define interceptors
• Right-click on target methods to apply interceptors to

targets
• Auto-generates jboss-aop.xml file
• Support for markers indicating a particular target’s

method(s) and/or field(s) are advised
• Advised members view to show all the advised members

for a specific target class

Feature

AOP is now beginning to bridge the gap in three areas
of software technology”“

JDJ.SYS-CON.com16 August 2005

• Aspect Manager window to view all the bindings and
pointcuts in effect (support changes)

 Finally, it should be noted that like Spring AOP, JBoss AOP
provides several out-of-the-box aspects. Examples are aspects
for implementing thread-local member variables and caching.

DARAC
 The DARAC framework gives us an alternate view of AOP
and facilitates a discussion of AOP internals. One of the most
significant differences between the previously discussed
frameworks and DARAC is that the latter uses Java control(s)
to specify aspects, and each method on the aspect control
specifies the associated advice type, aspect class, and pointcut
expression. Multiple methods can then be added to each
control so that multiple combinations of aspects, advice, and
pointcuts can be specified for each control.
 DARAC employs Java reflection and the dynamic proxy as
the intercession mechanism in the Java application. As a re-
sult, DARAC uses a factory pattern to instantiate application
objects that will participate in the AOP framework (refer to
Listing 1 for an example of creating a proxied target object).
 As with the Spring AOP framework, the CGLIB could be
used here – so that these application classes wouldn’t have to
use interfaces. Aspects classes aren’t restricted and any Java
class can serve as an aspect. Weaving is controlled via a JMX
listener, and so aspects can be turned on and off dynami-
cally at runtime using a JMX-based administrative command.
DARAC was developed for WebLogic Workshop 8.1.

DARAC Internals
 To better understand AOP technology let’s take a look
under the hood so to speak. Listing 1 shows application code
instantiating an AOP-enabled POJO object. DARAC makes
use of a Java control (implemented with WebLogic Workshop
8.1 using Java 1.4 and javadoc-style metadata annotations)
as the primary mechanism for introducing AOP into the
application and the associated IDE project. Note that in the
next major release BEA intends to deliver the Workshop IDE
as a suite of Eclipse plug-ins rather than a separate IDE. This
AOP control is implemented via the AspectManagerImpl.
jcs class, which can be downloaded from http://jdj.sys-con.
com. This class serves the following purposes:
1. If necessary, it instantiate the global (per-JVM)

AOPManager singleton class
2. Adds the aspect definitions into memory via AOPManager
3. Serves as a factory for applications to instantiate AOP-

enabled objects; as shown in Listing 1, the createProxy()
method is used to instantiate these objects

 This control supports method-level metadata-based at-
tributes for specifying the aspect information. The method
signature serves as a placeholder and specifies the name of
the advice to invoke in the aspect class (if no such method
exists, then the invoke method is called). The supported at-
tributes are:
• Aspect: the name of the aspect class
• Advice: specifies the type of advice (before, after, around)
• Pointcut: the regular expression used to match against a

fully qualified target class name

• Enabled: the boolean indicating whether the
aspect/advice is enabled (by default) at startup-time
or not

 The createProxy() method contains the code that associ-
ates the Java dynamic proxy with the application interface/
class. This code uses the AOControlIH class as a lightweight
invocation handler to be passed to Proxy.newProxyIn-
stance().
 This newProxyInstance method is how Java reflection
supports method-based intercession via a callback into
the invocation handler (a.k.a., the dynamic proxy). When-
ever the target object’s methods are called, Java will first
invoke the invoke() method on the invocation handler
class. As a result, the Java dynamic proxy in this case is the
AOControlIH class. However, my implementation of the
invocation handler is simple; it just forwards the invoke()
call to the global AOPManager class. This AOPManager
class contains the intelligence as far as what aspects exist,
what targets are active, and whether the aspects are active
at any point in time. AOPManager maintains three critical
data structures:
• HashMap of aspects – keyed by aspect class name
• HashMap of targets – keyed by target class name
• Targets[] array for efficiently maintaining a correlation

between target objects and their respective/advising
aspects

 The AOPManager is best explained by taking a look at its
key methods. The getAOPManager method serves as both
an access mechanism to retrieve a reference to this single-
ton object and as a factory to create the singleton. Also note
that during initialization of the singleton the AOPManager
class is bound into the J2EE JNDI tree so that:
1. It registers its existence to the administrative console
2. It avoids garbage collection (being a per-JVM global

singleton)

 The addAspect method simply adds aspect informa-
tion to a new HashMap entry for this aspect, and then
adds an associated MBean object representing the state of
this aspect. Not surprisingly, the addTarget method adds
the target object to the targets HashMap and initializes a
targets[] array entry for this new target. The addAspectsTo-
Target method then correlates these two data structures by
iterating across the aspects HashMap and for each aspect it
checks to see if the new target matches the pointcut expres-
sion for that aspect. If so, then the addAspect method is
called for the AOTarget associated object.
 The meat of this AOP implementation is in the invoke
method in this AOPManager class. This is where the actual
intercession occurs: the AOControlIH class proxies its
invoke method call to this AOPManager.invoke() method,
which does the following:
1. Locates the AOTarget object associated with this inter-

ceded/target object
2. Loops through the applicable aspects
3. If the aspect is enabled, it queries the advice type, and

if appropriate, invokes associated advice method before
and/or after invoking the target method

Feature

JDJ.SYS-CON.com18 August 2005

4. Finally, it returns the object that was returned from the
target method invocation

 The handleNotification method enables runtime weaving
by allowing the AOPManager class to be a JMX listener. This
notification method is a member of the RemoteNotifica-
tionListener interface and serves as the callback mecha-
nism for JMX event listeners. Please refer to Listing 2 for
details regarding the AOPManager class.
 The last class to discuss is the AOAspectWrapper class
and its associated AOAspectWrapperMBean interface. This
class contains all the attributes of an aspect including, for
example, its pointcut expression, advice type, and runtime
status as far as being enabled or disabled.
 To support JMX notifications (to AOPManager), this class
also extends the NotificationBroadcasterSupport class and
implements the AOAspectWrapperMBean interface. This
custom MBean implements the getStatus, setStatus, and
showStatus methods using a string to represent whether
the aspect is enabled (“On”) or disabled (“Off”). As a result
of this JMX-based weaving, users can activate and deacti-
vate aspects via the command-line (refer to Listing 3 for an
example).
 The DARAC approach to AOP has the following benefits:
1. It takes a KISS (Keep It Simple Stupid) approach to speci-

fying aspects
2. It supports runtime weaving efficiently and elegantly
3. It doesn’t dictate anything regarding the nature of an

aspect class
4. It doesn’t require Java 1.5

 And of course, DARAC has a few disadvantages:
1. It’s somewhat intrusive with respect to application

code requiring objects to be instantiated via a factory
method.

2. It doesn’t adhere to the same pointcut expression lan-
guage used by AspectJ, AspectWerkz, and JBoss AOP

3. It doesn’t provide any IDE tooling for navigating between
application code and aspects/advice

Summary and AOP Futures
 What follows is a table summarizing this discussion on AOP
frameworks and technologies.
 This author believes that AOP will be extremely important
to the future of software. However, it’s this non-intrusive
power that we must consider before casually implementing
AOP across the enterprise. For example, current develop-
ment, debugging, and management/monitoring tools aren’t
suited to AOP-enabled code. Moreover, most developers and
administrators lack experience with AOP. As a result, I recom-
mend that you proceed cautiously before implementing AOP
extensively, and choose your AOP framework carefully based
on your organizational needs and priorities.

Feature

Summary Table AOP Frameworks Comparison

Framework
Join Point &
Pointcut Approach

Aspects
Implementation

Weaving
Approach

IDE Tooling
(Eclipse plug-ins)

Interception
Technology

AspectJ

Spring

AspectWerkz

JBoss AOP

DARAC

Via code Highly specialized
classes using AOP-
specific Java extensions

Build-time
orientation

Excellent Uses pre-compiler

XML file Implement AOP-
specific interfaces

Runtime
orientation

Minimal Uses reflection
(dynamic proxy)

Annotations or XML file Plain Java classes Build-time and
runtime

Basic (can benefit
from AspectJ merger)

Bytecode manipulation
or reflection-based proxy

Metadata or XML file Plain Java classes Runtime
orientation

Good (relatively
new feature)

Uses metadata, pre-
compiler and/or
reflection

Uses simple metadata
annotations on an
AOP Control

Plain Java classes Runtime
orientation
(JMX-based)

None Uses reflection

Listing 1: Instantiating Target Object
 import controls.POJO;

import controls.POJOInterface;

public class Example

{

 /**

 * @common:control

 */

 private controls.AspectControl aomCtl;

 public Example()

 {

POJOInterface pojo = (POJOInterface)

 aomCtl.createProxy(aomCtl, new POJO());

pojo.doSomething(“HelloAOP”);

 }

}

Listing 2: AOPManager Class Summary
Refer to attached file named AOPManager.java.

Listing 3: Administrative Control Over Weaving (WebLogic 8.1 example)
java weblogic.Admin –url t3://localhost:7001

-username weblogic -password weblogic SET

-mbean Aspects:Name=AOProxy.Aspects.TracerAspect.logger

-property Status On

JDJ.SYS-CON.com20 August 2005

hree times in recent years I’ve
joined an organization that was
relatively new to Java develop-
ment and missing some basic

infrastructure elements that I’d relied
on in previous development efforts.
These elements include utility classes,
standards and conventions, and build
and quality control tools that help
you produce a higher quality prod-
uct with less risk. If you’re involved
in a development effort, whether it’s
new or ongoing, that’s lacking any of
these elements, you should consider
incorporating them into your project
infrastructure.

Nuts and Bolts
 Some common utility software com-
ponents should be incorporated into
your development efforts as early as
possible, because delaying their intro-
duction may result in the proliferation
of differing approaches that will need to
be reworked later.

Configuration Settings
 Access configuration settings
via wrappers that hide the settings’
underlying storage mechanism. There
are numerous places where you can
define configuration settings, including
properties files, XML files, the database,
and via the JDK’s preferences package
(which on Windows stores preferences
to the registry, and to the file system
on Unix). If your code uses direct calls
to these mechanisms and future needs
require that you either change which
mechanisms are used or add functional-
ity to those mechanisms, you’ll need to
make changes everywhere the mecha-
nisms are referenced.
 For example, suppose developers
store configuration settings in prop-
erties files and load and access the
settings via calls to the Properties class
sprinkled throughout their code. If
sometime later you find that changes
made to the configuration settings need

to be reflected in the application while
the application is running, you’ll need
to change the code that loads those
properties to support reloading them.
If the settings that need to be reloaded
aren’t all loaded by the same code – for
example, some are UI settings loaded by
UI code and others are network settings
loaded by network code – you’ll need
to make the same types of changes in
multiple places.
 You might also need to change the
underlying storage mechanism. For
example, a new customer might be da-
tabase-centric and used to administer-
ing configuration settings in database
tables and insist that your settings be
administered the same way. If you’re
reusing a code base that has references
to the Properties class throughout
the code, you’ll have to make a lot of
changes to accommodate the new
customer.
 You can roll your own configuration
settings classes or harvest them from
the Internet. If you can incorporate
open source into your product, take a
look at the Jakarta Commons Configu-
ration package. If you need or prefer
to roll your own, you could start with a
simple factory+interface approach as in:

public class ConfigFactory {

 public static ConfigFactory getIn-

stance() {…}

 public Config getConfig() {…};

}

public interface Config {

 public int getInt(String settingName);

 public long getLong(String setting-

Name);

 …

}

 You would then implement the
Config interface once for each set-
tings repository that you use, as in a
ConfigProperties implementation, a
ConfigXML implementation, etc.

Logging
 If you don’t have a logging package
in place very early in your coding ef-
forts, you can easily find yourself with
a hodgepodge of logging approaches
that make error investigation far more
difficult than it should be. I’ve joined
a number of large in-progress devel-
opment efforts where almost every
subsystem had its own custom logging
package with numerous log files scat-
tered in various directories, and log
messages and message timestamps
with varying formats. Consequently,
one of the first hurdles in investigating
a problem becomes determining, and
locating, which log files may contain
messages related to the problem. Then,
if messages of interest are in multiple
files, you may need to collate them into
a chronological sequence, possibly rec-
onciling different timestamp formats to
do so.
 Your choice for logging should be be-
tween using the JDK logging APIs and
Log4j, unless you have specific logging
needs that can’t be addressed by either
package. The March 2005 issue of JDJ
contained an excellent article, “Log4j
vs java.util.logging,” by Joe McNamara
that can help you in your decision.
 If you’re developing J2EE applica-
tions, an additional factor in your
decision should be how easily your
log messages can be directed to the
application server’s logging console
and files. Many application server
administration UIs have capabilities for
displaying and filtering log messages,
so if you can direct your messages to
the application server’s log message
store, you can capitalize on those ca-
pabilities. In addition, having your log
messages automatically collated with
the application server’s log messages
may aid your problem investigation.
For example, suppose your application
fails because a resource pool in the
application server was exhausted, but
the error messages reported by your

Infrastructure

by Glen Cordrey

Setting Up a Java Shop

T

Glen Cordrey is a Java architect

and developer who has worked

with Java for eight years. He

previously penned articles on

J2ME for JDJ, and also edited the

J2ME section. He works in the

Baltimore–Washington area.

glen@oojava.com

Building better software faster

21August 2005JDJ.SYS-CON.com

application contain insufficient detail
to determine the cause. Having your
messages in the application server log
right after an application server mes-
sage reports the exhaustion saves you
considerable time in understanding the
problem.
 If you need to support more than
one logging mechanism, consider
using the Jakarta Commons logging
package, which provides a com-
mon logging API under which you
can plug in JDK logging, Log4j, or a
custom logger. However, realize that
if you use this common API, you will
be unable to access some features of
the underlying implementation, as is
explained at http://www.qos.ch/log-
ging/thinkAgain.jsp by Ceki Gülcü, a
key contributor to Log4j.

Exception Handling
 Establish your exception handling
approach early to ensure that you have
mechanisms in place for the consistent
and complete reporting and handling
of errors. Decide on the project’s
philosophy regarding checked and un-
checked exceptions – should checked
exceptions be wrapped in unchecked
exceptions? Your initial reaction might
be “Why is this even an issue, since it
defeats the point of having checked
exceptions?” Well, a number of lumi-
naries in the Java field, such as Bruce
Eckel, advocate wrapping checked ex-
ceptions in unchecked exceptions (see
www.mindview.net/Etc/Discussions/
CheckedExceptions). One argument for
doing so is that many developers don’t
really know what to do when a checked
exception occurs. Because they’re
forced (by the compiler) to either catch
it or declare it in their method’s throws
clause, they commit sins such as catch-
ing but not rethrowing it, which can
make a problem investigation more
difficult. (See Joshua Bloch’s book Effec-
tive Java for a more extensive discus-
sion on why consuming exceptions is
bad practice.)
 Regardless of which approach you
subscribe to, consider incorporating
default exception handlers into your
architecture. The ThreadGroup class has
an uncaughtException method that you
can use to apply default processing for
exceptions that propagate up from any
threads in the ThreadGroup. With JDK
1.5, things get even better, as the Thread
class has a setUncaughtExceptionHan-
dler method that sets the handler for

the thread, and a setDefaultUncaught-
ExceptionHandler method that sets the
exception handler for all threads that
don’t have their own exception handler.

Shop Layout, Standards,
and Procedures
 Don’t try to reinvent the wheel when
it comes to deciding how to organize
your project directories and defining
development standards, guidelines,
and conventions – there are plenty of
resources on the Web to which you can
refer.
 Sun has published directory and
naming standards at http://java.sun.
com/blueprints/code/projectcon-
ventions.html and http://java.sun.
com/blueprints/code/namingcon-
ventions.html, which should be your
preferred starting point unless other
considerations are overriding. One such
consideration might be your selection
of a build tool – for example, Maven
(discussed below) has a recommended
directory structure.
 Sun also has published coding stan-
dards, although I find the Sun standards
to be rather excessive and prefer fewer
standards, with more focus on reducing
potential sources of problems. In that
light I recommend starting with the
AmbySoft standards at http://www.
ambysoft.com/javaCodingStandards.
html, which also discuss alternative
approaches for various items such as
parameter naming.
 Ant is the de facto standard for build-
ing Java applications, but it isn’t just
for building, as it supports almost all
development tasks short of writing code
and project management. In addition,
many product manufacturers such as
application server vendors now provide
Ant code for building with, configuring,
deploying to, and/or managing their
products.
 You can incorporate Ant into an
automated build and test environment
using CruiseControl. The advantages of
doing so are explored in Martin Fowler’s
discussion of Continuous Integration
(available from the CruiseControl Web
page), and come from the observation
that the earlier in the development
process you find problems, the cheaper
it is to fix them. Continuous Integration
helps you find many problems soon
after they are inserted into the baseline.
 You can also have CruiseControl
automatically run various open source
tools (discussed below) that identify

potential bugs and quality issues in
your code. These tools, along with
Ant, can log their processing steps
and results as XML, which means that
their execution can be automatically
analyzed and acted upon. For example,
CruiseControl can analyze build
results and send e-mail reporting on
the success or failure of the build and
automated tests.
 An alternative to the combination of
Ant and CruiseControl is Maven, which
provides a more comprehensive, proj-
ect-management perspective. I haven’t
used Maven and so can’t comment on
it, but their Web site contains extensive
documentation.

Quality Control and Improvement
 You can improve the efficiency of
your development effort and the quality
of your product by incorporating auto-
mated tests using JUnit and tools built
on top of it such as HttpUnit and Canoo
WebTest. HttpUnit provides APIs that
you can call to simulate requests from a
browser, whereas with WebTest (which
uses HttpUnit) you write XML to do the
same.
 As mentioned earlier, a number of
open source products exist to improve
the quality of your code. FindBugs and
PMD analyze your code to identify pos-
sible bugs, including sins such as the
previously mentioned consumption of
exceptions. JDepend helps you manage
dependencies between Java packages,
because it’s easier to extend, reuse, and
maintain packages if the dependencies
between packages are well factored.
JavaNCSS counts lines of code, number
of classes, etc., and also computes
cyclomatic complexity numbers (a.k.a.
McCabe metrics), which can be used to
identify code that is overly complex and
should be considered for refactoring.
 Most (if not all) of these tools provide
Ant targets and plugins for IDEs such as
Eclipse. So in addition to running tools
such as these as part of your build cycle,
you should ensure that developers know
about them and routinely run them
against their code before checking it in.

Summary
 These elements of a project infra-
structure are low-hanging fruit – a mod-
est investment of effort to incorporate
them into your development efforts
early on will provide benefits through-
out development, helping you build
better software faster.

JDJ.SYS-CON.com22 August 2005

Java on mobile phones” has
been the hottest topic at the

JavaOne conference for the past
several years. This year was no ex-
ception and a large part of the show
floor was designated as the “Wireless
Village.” With tens of billions dollars’
worth of Java phones and related ser-
vices sold every year, Sun and many
others are clearly making money.
However, most JavaOne attendees
I met were enterprise developers.
Each year they ask the same ques-
tions: “How can I be part of the Java
ME success?” “Will mobile Java ever
create as many developer opportuni-
ties as enterprise Java?” The answers
to those questions depend on wheth-
er the small and mid-sized busi-
nesses can leverage mobile Java to
improve productivity and customer
satisfaction as they successfully did
with enterprise Java.
 The answer to how mobile Java
can improve productivity lies in
integrating mobile phones into
enterprise information systems so
employees gain real-time knowledge
about the business while they’re
away from their desk. As an example,
mobile e-mail on BlackBerry Java
devices drives the business in many
companies, especially sales and
services departments. To illustrate
applications beyond mere mo-
bile e-mail, Sun released a mobile
phone–based JUICMIDlet (JavaOne
User Information Console) applica-
tion for this year’s JavaOne attendees
(see Figure 1). JUICMIDlet stored the
entire JavaOne session schedule and
detailed information for each ses-
sion on each attendee’s phone. This
replaced the heavy 200-page book
folks used to carry in their back-
packs. Right from the phone you can
browse sessions based on categories
and see their details. If you see an
interesting session, you can then
add it to your schedule. Just before

the scheduled session is due to start,
the phone would alert you with flash
and sound. In addition, JUICMIDlet
downloaded the latest conference
news and key JavaOne blogs onto
your phone. What’s neat is that
JUICMIDlet doesn’t even require
you to have data services on your
phone – the application deployment
and content updates are all done via
Bluetooth on the show floor.
 Considering JUICMIDlet’s archi-
tecture – it already has many of the
key elements of enterprise mobile
applications: always-on, pervasive,
and facilitates information flow.
This is similar to the type of app that
could be used by folks in field servic-
es, sales, or marketing. By building
JUICMIDLet, Sun has demonstrated
that this type of mobile app is fea-
sible on the vast majority of mobile
phones on the market. It also got me
thinking about ideas regarding the
potential to improve JUICMIDlet us-
ing currently available technology.

• Include a more comprehensive
set of conference events updates
such as show floor vendor presen-
tations, Java.net information, or
vendor parties. This could be done
with a Web service API on the back
end for all vendors to publish their
events to.

• Send questions to the speaker in
the Q&A session of a 1,000-person
standing room session via SMS or
voice.

• Feedback surveys from your
phone allowing you to fill them
out during the session.

• Bluetooth sensors to detect your
location in the conference center
and provide directions to your next
session.

• Borrow an idea from the Nokia
Sensor application and allow
attendees to publish their own pro-
files on the phone via Bluetooth.
You’ll be able to find out who’s who
in your vicinity during a gathering
and strike up a conversation.

Wireless

by Michael Yuan
Is Mobile Java a Reality?

“

Michael Juntao Yuan is a

member of JDJ’s editorial

board. He is the author of three

books. His latest book, Nokia
Smartphone Hacks from O’Reilly,

teaches you how to make the

most out of your mobile phone.

He is also the author of

“Enterprise J2ME” – a best-selling

book on mobile enterprise

application development.

Michael has a PhD from the

University of Texas at Austin. He

currently works for JBoss Inc. You

can visit his Web site and blogs at

www.MichaelYuan.com.

Some casual observations from JavaOne 05

 Figure 1 JUICMIDlet in action

JDJ.SYS-CON.com24 August 2005

 In addition to enterprise ap-
plications, mobile entertainment
consumer apps are another usage
of mobile Java. This is already a
multi-billion dollar business and
still growing. A significant hurdle,
however, to the adoption of mobile
Java games is that most consumers
are unaware of what games their
phones are capable of running.
Also, the business model relies on
consumers buying cheap games
often. Offering trial downloads
for every $5 game is not economic
for game developers. In this year’s
JavaOne Wireless Village I found a
perfect solution from mpowerplayer
(www.mpowerplayer.com).
 The mpowerplayer product is a
Java mobile phone simulator for
regular computers that runs on the
standard Java environment (JDK
1.4) over Java Web Start. It allows
consumers to run mobile Java
games on their PC or Mac through

a regular Web browser. Consum-
ers can learn about the graphic
quality, user experience, and game
play of the game on their PC before
making a purchase. The develop-
ers have very little work involved to
repackage the existing mobile Java
game for mpowerplayer. The Texas
Hold’Em poker contest on the show
floor was how many JavaOne at-
tendees got a taste of the quality of
mobile games firsthand. Many users
I talked to felt that the graphics
quality was good enough even for
playing on the PC screen, let alone
a mobile phone. I strongly urge you
to play some free trial games from
mpowerplayer.com on your PC and
see how far mobile phone games
have come! Figure 2 shows “Prince
of Persia” running on the mpower-
player.
 JUICMIDlet and mpowerplayer
are just two examples of interesting
mobile Java applications at JavaOne

05. Nokia and Motorola also had
an array of exciting new Java de-
vices on display in their booths
that I can’t wait to get my hands
on! Nokia announced support for
the Java ME CDC (Connected De-
vice Configuration) profile on
their popular Series 60 devices (25
million units shipped). Since the
CDC is close to Java SE and sup-
ports much more API than MIDP,
it opens up fresh opportunities
for both mobile developers and
users, especially for the enterprise
applications. Sun also released
support for the Nokia SNAP API
for multi-player mobile game
servers in the Wireless Toolkit
|package. This is an important
step for mobile game developers
to leverage Nokia’s advanced mo-
bile game infrastructure and player
communities. All in all, JavaOne
is definitely an exciting place to be
for mobile Java developers.

Wireless

 Figure 2 Prince of Persia in mpowerplayer

The answer to how Java can improve productivity lies in
integrating mobile phones into enterprise information systems”“

����������������������������������

����������������������������������

JDJ.SYS-CON.com26 August 2005

oday’s enterprise applications are distributed by de-
sign. For applications to interact with one another over
networks optimally, they require Service Oriented and
Event Driven Architectures made up of loosely federated

business resources, that interact by exchanging requests (for
data delivery and integration, as well as for services) and that
can handle streams of diverse business processes in real-time. To
support large-scale, enterprise integration, organizations need to
adopt strategies that rationalize the infrastructure for integration
based on the requirements of business/IT organization itself.
The only successful integration efforts are those that provide
agile, pervasive and low cost solutions in order to cater to today’s
diverse deployment environments, while fully leveraging avail-
able standards.
 Enterprise Service Bus (ESB), which can be defi ned as
middleware that brings together both integration technologies
and runtime services to make business services widely available
for reuse, offers the best solution for meeting today’s enterprise
application integration challenges by providing a software
infrastructure that enables SOA. However, there are currently a
number of different vendors that provide ESB solutions, some
of which focus purely on SOAP/HTTP and others who provide
multi-protocol capabilities. Because these vendors span the ho-
rizon from big enterprise generalists (app servers), to mid-tier en-
terprise integration providers, all the way to smaller, ESB/integra-
tion specifi c-providers – there doesn’t seem to be an established
consensus regarding the key requirements for an ESB.
 As application architects, we have often thought about what
requirements would defi ne an ESB designed specifi cally to cater
to the needs of an agile, enterprise integration model. In build-
ing for these specifi c requirements, we realized that we actually
needed to develop a new type of ESB – hence the ServiceMix
project.

Characteristics of an Agile ESB
 The main criteria we were looking for in our ESB are as
follows:
• Standards based - While standards-based support is mar-

keted by many ESB vendors, the support is provided exter-
nally, requiring developers to work with proprietary APIs
when directly interacting with internal APIs. ServiceMix was
designed with the requirement to eliminate product API
lock-in, by being built from the ground up to support the

Java Business Integration specification (JSR 208). Our agile
ESB needs to use JBI as a first class citizen, but also support
POJO deployment for ease of use and testing.

• Flexible - Another characteristic of an agile ESB is the flex-
ibility with which it can be deployed within enterprise appli-
cation integration framework: standalone, embedded in an
application component, or as part of the services supported
by an application server. This allows for component re-use
throughout the enterprise. For example, the binding for a real-
time data feed might be aggregated as a web-service running
within an application server, or streamed directly into a fat cli-
ent on a traders desk. An agile ESB should be able to run both
types of configurations seamlessly.

 To provide rapid prototyping, an agile ESB should support
both scripting languages and embedded rule engines, allowing
business processes to be modeled and deployed quickly.

 Some have argued that integration functionality is best
place at the edges of the network. Others prefer a logical ESB
server to be separate from the edges – to keep the edges sim-
ple and lightweight. Both approaches have their strengths
and weaknesses – so we wanted an ESB that is simple and
lightweight to deploy into any JVM or into a web server or
a full Java EE server – reusing all the available facilities in
which it is deployed.

• Reliable - Our ESB needs to handle network outages and
system failures and to be able to reroute message flows and
requests to circumvent failures.

• Breadth of Connectivity - An agile ESB must support both
two way reliable Web-services and Message Oriented-
Middleware and needs to co-operate seamlessly with EIS
and custom components, such as batch files.

 In addition we want support for the various new WS-*
standards to do with connectivity like WS-Notification, WS-
DistributedManagement and WS-ReliableMessaging.

 We also wanted our agile ESB to be vendor independent and
open source, to promote user control of source code and direc-
tion. An added benefi t of this is not only the zero purchase cost,
but the total cost of ownership will be reduced where users are
actively contributing and maintaining our ESB.
 We rapidly came to the conclusion, that as there was no
single product that would adequately meet our needs, we’d
have just go a head and build one!

James Strachan has been

writing enterprise software

for over 20 years now

from C, C++, Smalltalk,

Java, and more recently

Groovy. He is an active

open source developer and

one of the founders of the

Apache Geronimo project

(Apache’s J2EE container)

and the Groovy programming

language as well as other

projects like ActiveMQ,

ActiveCluster, ActiveSpaces,

jelly, dom4j and jaxen and

works on a variety of other

open source projects like

Spring, PicoContainer,

Axion, drools, Maven,

and Jakarta Commons.

jastrachan@mac.com

by Rob Davies and James Strachan

T

SOA + EDA =
Open Source ESB: ServiceMix(*)
Developing a new type of ESB

Feature

27August 2005JDJ.SYS-CON.com

Rob Davies has developed

enterprise software products

for over 20 years and is

currently working for Exist

Engineering, which provides

software solutions to the

global market using open

source. Before joining Exist,

Rob was the CTO and founder

of SpiritSoft, an enterprise

messaging company. Rob is

currently developing the JBI

container for ServiceMix, an

open source ESB.

rajdavies@exist.com

What Is JBI?
 There has been a fair amount of buzz about JBI and there is
some confusion over what JBI (JSR 208) is.
 JBI is a simple API to a Normalized Message Service and
Router along with a component and management model for
deploying integration services such as routing engines, BPEL
engines, rule systems, transformation engines etc.
 JBI provides a logical XML messaging network which maps
well to web services, HTTP, email and JMS/MOM while easily
adapting to legacy systems, binary transports and RPC systems
like EJB and CORBA. Think of it as the next logical abstraction
above JMS, with support for different message exchanges (one
way, request response etc).
 The binding components deal with all the plumbing and
protocol stuff, then service engine components work on a logical
XML layer, providing content based routing, orchestration, rules,
transformations and custom enrichment etc.
 So BPEL engines no longer need to deal with all of the
possible protocols, transports and wire formats; they can just
delegate to JBI for the physical routing to service endpoints.
Similarly content based routers, rules engines, transformation
engines can sit on the JBI bus and do their thing. JBI is looking
like being a great API for integration component developers.
 Many application developers will still end up writing POJO
services and dropping them into their container and expos-
ing them as web services - so often they won’t need to use the
JBI APIs directly; but for integration vendors and open source
integration projects, JBI provides a way for us to all work together
at the ESB level and to reuse integration containers, components
and tooling.

ServiceMix
 ServiceMix is an open source (Apache licensed) Enterprise
Service Bus which is compliant with the Java Business Specifica-
tion (JBI), JSR 208.
 ServiceMix already provides JBI support for Apache Geroni-
mo, the first application server to provide this feature.
 The ability to use a standard for the deployment and man-
agement of integration components is essential if integration
architects, developers and component vendors are not to be tied
to the proprietary API’s that have existed to date when deploying
within an ESB.
 However JBI is quite strict in the way Components are
installed and services deployed. JBI mandates that each Com-
ponent must be installed from an archive, containing a well
defined XML descriptor file, and that the archive must be un-
packed on the local file system and the installation component
provided with it’s own working directory, if it requires it.
 This strict contract does not lend itself well to ease of use,
quick development or testing - and negates some deployment
scenarios where you would to use an ESB as a lightweight con-
tainer embedded in an application fragment or library.
 Hence ServiceMix has taken the approach that while JBI is
a first class citizen (it’s a JBI compliant container) and inter-
nally all message flows are routed using JBI constructs (like the
Normalized Message Service), components can be additionally
deployed as POJOs. ServiceMix is also tightly integrated with the
Spring framework, allowing Spring to deploy integration com-
ponents for you if you so wish within a regular Spring context.

Reliable
 ServiceMix is designed to easily support simple and auto-
matic distribution of components and message flows. Internally,

ServiceMix distributes events using a plug-able message routing
architecture, called a Flow.
 By default, ServiceMix supports three Flow types for message
routing:
• STP - straight-through interactions, components are inter-

acted with directly. This is ideal for embedded or light weight
deployment.

• SEDA (Staged Event Driven Architecture) for scalable mes-
sage routing

• Clustered - Components seamlessly register themselves with
other ServiceMix instances in a cluster, allowing for seamless
distributed event propagation

Breadth of Connectivity
 ServiceMix can handle any JBI standard component; so
components from other open source projects such as PXE from
FiveSight or components from the Celtix project should just drop
right in.
 In addition, ServiceMix comes with a whole raft of reusable
JBI components
• SAAJ for working with Soap With Attachments providers such

as Apache Axis
• WSIF for working with any Web Service Invocation Framework

implementation
• ActiveSOAP and XFire support to provide clean integration

with new lightweight SOAP stacks
• Scripting support with JSR 223 or Groovy to allow powerful

and agile integration
• HTTP, JMS, email and Jabber transports to provide a general

message bus
• JCA support for fast and efficient processing of messaging

resources like JMS with connection, session and thread pool-
ing as well as efficient parallel processing and transaction &
exception handling

• Quartz and JCA WorkManager support for enterprise timer
integration

• Caching support with JCache integration to allow any service
invocation to be cached among a cluster based on some cor-
relation or request key (using XPath or Java code to extract the
key)

• XSLT support to allow transformations to be used in
pipelines

• Reflection, Spring and Mule support for clean POJO integration
• SQL support with Oracles XSQL tool to provide CRUD opera-

tions inside message flows

JBI Client API
 To make it simpler to use ServiceMix for developers, we’ve
created a JBI Client API which makes it easy to work with any
JBI container or any available JBI component.

Using the JBI Interfaces
 The following ServiceMix methods provide some helper
methods for easier use of the JBI APIs

Sending Messages One Way
 This example uses a specific service to make an invocation
function call:

InOnly exchange = client.createInOnlyExchange();

NormalizedMessage message = exchange.getInMessage();

message.setProperty(“name”, “James”);

message.setContent(new StreamSource(new StringReader(“<hello>

JDJ.SYS-CON.com28 August 2005

world</hello>”)));

// lets use a specific service to dispatch to

QName service = new QName(“http://servicemix.org/cheese/”,

 “receiver”);

exchange.setService(service);

client.send(exchange);

 In this example, we assume that the JBI container will have
setup a default routing connection for our client, so we don’t have
to worry about specifying the endpoint.

InOnly exchange = client.createInOnlyExchange();

NormalizedMessage message = exchange.getInMessage();

message.setProperty(“name”, “James”);

message.setContent(new StreamSource(new StringReader

 (“<hello>world</hello>”)));

client.send(exchange);

Invoking Services with InOut Exchanges
InOut exchange = client.createInOutExchange();

NormalizedMessage inMessage = exchange.getInMessage();

inMessage.setProperty(“name”, “James”);

inMessage.setContent(new StreamSource(new StringReader

 (“<hello>world</hello>”)));

// optionally specify the endpoint

exchange.setService(service);

client.sendSync(exchange);

NormalizedMessage outMessage = exchange.getOutMessage();

Using the POJO Methods
 Following are a few helper POJO-based methods, provided to
allow you to use ServiceMix with regular POJOs to hide some of the
JBI’s XML marshalling details.
 This allows you to use a plugable Marshaler to map your POJOs
to JAXP Sources.

Sending Messages
 This example uses a specific service to make an invocation
call:

Map properties = new HashMap();

properties.put(“name”, “James”);

// lets use a specific service to route to

QName service = new QName(“http://servicemix.org/cheese/”,

 “receiver”);

EndpointResolver resolver = client.createResolverForService

 (service);

client.send(resolver, null, properties, “<hello>world</hello>”);

 In the next example, we assume that the JBI container will
have set up a default routing connection for our client, so there
is no requirement to specify the endpoint.

Map properties = new HashMap();

properties.put(“name”, “James”);

client.send(null, null, properties, “<hello>world</hello>”);

Invoking Services with InOut
// optional endpoint resolution

EndpointResolver resolver = client.createResolverForService

 (service);

Map properties = new HashMap();

properties.put(“name”, “James”);

Object response = client.request(resolver, null, properties,

“<hello>world</hello>”);

Example Using JMS and XSLT
 Here’s a quick example to show you some of the Service-
Mix integration capabilities in action. We consume messages
using JCA, then transform them with XSLT and send them
to a new destination using JMS.
 Let’s set up a JBI component to consume from JCA using
JMS:

<component id=”myJmsReceiver” service=”foo:myJmsReceiver”

 class=”org.servicemix.components.jms.JmsInUsingJCABinding”

 destinationService=”foo:transformer”>

 <property name=”jcaContainer” ref=”activeJcaContainer”/>

 <property name=”activationSpec”>

 <bean class=”org.activemq.ra.ActiveMQActivationSpec”>

 <property name=”destination” value=”test.org.servicemix.

 example.jca/>

 <property name=”destinationType” value =”javax.jms.Topic”/>

 </bean>

 </property>

</component>

 Let’s transform the message

<component id=”transformer” service=”foo:trans

 former” class=”org.servicemix.components.xslt.XsltComponent”

 destinationService=”foo:transformedSender”>

 <property name=”xsltResource” value=”classpath:org/servicemix/

 components/xslt/transform.xsl”/>

</component>

 Now let’s send the message using the Spring JmsTemplate

<component id=”myJmsSender” service=”foo:myJmsSender” class=”org.

 servicemix.components.jms.JmsSenderComponent”>

 <property name=”template”>

 <bean class=”org.springframework.jms.core.JmsTemplate”>

 <property name=”connectionFactory”>

 <ref local=”jmsFactory”/>

 </property>

 <property name=”defaultDestinationName” value=”test.org.

 servicemix.components.xslt.source”/>

 <property name=”pubSubDomain” value=”true”/>

 </bean>

 </property>

</component>

Feature

JDJ.SYS-CON.com30 August 2005 ���

������������������������������������
������������������������������

��������������
�������� �� �������� ���������� ��������� ����� �� �����
���
�������� ��� ������ ����� ���� ������� ��� ��� ��������� �����
���������� ���� �������� ����������� ���� ���������
���������������������������������

�������� ��� ������ ���������������� ����� ���� ���� ������
��
������������� ����� ���������� ������� ������� �����������
���
�����������������������������

����� ���� �������� ��� ������ ��� ���������� ���� �������
���������� �������� ��� �� �������� ��� ���� ���� ����������
���������� ����� ���������� ���� ��������� �����������
�������� ����� ������������ ���� �������������� ������� ���
��������� ��������� ������ ��� ���������� �������� �����������
���

���
��
��
���� ���������� ����������� ���� ������� �������� ��������
��
���������������������

���� ���� ��������� ���� ����� ����� ��� ���� �������� ��������
��
���������������������������������������

��
���

���

������
�������
��

��������

Scripting Support
 ServiceMix also supports scripting languages through
JSR 223 – Scripting for Java. Here are some examples using
Groovy:
 Before we go into detail of how you can work with JBI and
Groovy in ServiceMix, lets show a simple hello world kinda
example.

<component id=”myServiceUsingXMLText” service=”foo:myServi-

ceUsingXMLText” endpoint=”myServiceUsingXMLText” class=”org.

servicemix.components.groovy.GroovyComponent”>

 <property name=”scriptText”>

 <value>

 <![CDATA[

// lets output some message properties

outMessage.properties = [foo:”hello”, someList:[1, 2, 3]]

// lets output some non-xml body

outMessage.bodyText = “””

<hello>

 <world person=”$inMessage.properties.name”

location=”London”/>

</hello>

“””

]]>

 </value>

 </property>

 </component>

 As you can see the component is configured with a
piece of Groovy to execute when the service is invoked.
 Now we’ll go through the various options which are
available when working with JBI and Groovy in ServiceMix.

Maintaining State Across Requests
 It’s often handy to keep track of state across requests. There
is a variable called ‘bindings’ which you can use to maintain
state; here’s the groovy...

if (bindings.counter == null) {

 bindings.counter = 1

}

else {

 ++bindings.counter

}

def date = new Date()

outMessage.bodyText = “<response counter=ʼ$bindings.counterʼ

date=ʼ$dateʼ></response>”

Working with JBI Properties
 In ServiceMix you can access the JBI message properties
as a Map and work natively with it in Groovy using various
mechanisms. e.g.

// lets output some message properties

outMessage.properties.foo = “hello”

outMessage.properties.someList = [1, 2, 3]

or use an intermediate object if you’ve lots of properties
to set

def props = outMessage.properties

props.foo = “hello”

props.someList = [1, 2, 3]

or just use the native Map/property syntax

outMessage.properties = [foo:”hello”, someList:[1, 2, 3]]

Generating Output
 Groovy provides various mechanism for generating the
output (whether it is the result of a service or a transfor-
mation). Which mechnism you use depends on your use
case and personal preference.

String Templates
 You can use Groovy string templates to output XML,
which is a nice, simple way to generate blocks of XML with
dynamic content:

outMessage.bodyText = “””

<hello>

 <world person=”$inMessage.properties.name”/>

</hello>

“””

 Notice the user above of the input messages’s ‘name’
property, which is equivalent to the expression

inMessage.getProperty(“name”)

POJO Return Values
 You can return a POJO as the body of a message - which
other components can either transform or the default Mar-
shaler will figure out the right thing to do.

// lets output the body as a POJO

outMessage.body = [3, 2, 1]

Using Groovy Markup
 Groovy supports a simple and concise markup mechanism
which can be used to programatically generate some XML
markup (either DOM, SAX or any other XML model) while
retaining the full power of Groovy within the control flow of
the markup.

// lets output some XML using GroovyMarkup

outMessage.body = builder.hello(version:1.2) {

 world(person:inMessage.properties.name, location:ʼLondonʼ)

}

Conclusion
 If you are interested in SOA, EDA and integration please
take a look at the ServiceMix project and see if it can help
you. We welcome contributions!

Resource
ServiceMix: http://servicemix.org/

Feature

���

������������������������������������
������������������������������

��������������
�������� �� �������� ���������� ��������� ����� �� �����
���
�������� ��� ������ ����� ���� ������� ��� ��� ��������� �����
���������� ���� �������� ����������� ���� ���������
���������������������������������

�������� ��� ������ ���������������� ����� ���� ���� ������
��
������������� ����� ���������� ������� ������� �����������
���
�����������������������������

����� ���� �������� ��� ������ ��� ���������� ���� �������
���������� �������� ��� �� �������� ��� ���� ���� ����������
���������� ����� ���������� ���� ��������� �����������
�������� ����� ������������ ���� �������������� ������� ���
��������� ��������� ������ ��� ���������� �������� �����������
���

���
��
��
���� ���������� ����������� ���� ������� �������� ��������
��
���������������������

���� ���� ��������� ���� ����� ����� ��� ���� �������� ��������
��
���������������������������������������

��
���

���

������
�������
��

��������

JDJ.SYS-CON.com32 August 2005

ne of my tasks at Sun was to
keep abreast of the technolo-
gies in the marketplace that
competed with Java. At certain

points in the release we would summa-
rize where we were compared to other
technologies and, if necessary, focus on
areas where we could improve.
 The biggest unknown at the start
of my last project was C# and .NET.
I heard through the grapevine that
a project from Microsoft, known as
“Cool,” was on its way, a project that
was the forerunner to C#. However, it
was less than a year before the Java 5
project started that both those tech-
nologies were publicly announced.
 Five years later what do we see?
The .NET platform has been under
constant development, often too fast
for many corporate users to adopt.
There has been a 1.0, 1.1, and 2.0, each
which could be counted as a significant
version in their own right. Follow-
ing the churn of the .NET SDK,
the Visual Studio product has
required its own aggressive update
schedule, although when compar-
ing feature lists, C# is not singled out
for any special attention on Visual
Studio’s Web pages. Looking at the
forums, Visual C++ and Visual Basic
and not C# attract the lion’s share
of the forum attention. In addi-
tion, the underground community
site, gotdotnet.org, has undergone
significant site and management
changes. Given that C# hasn’t necessar-
ily been the instant success that many
thought it would have been, it hasn’t
been for lack of trying. The MSDN site
has adopted many of the best practices
used on other developer Web sites.
You can now read and vote on C# bugs
and submit suggestions among other
community-building initiatives. The
C#, C++, and C compilers are now free,
although not obviously as optimized as
the professional edition. While C# has
gained some traction in those years,
why didn’t it make the grade?

Java Didn’t Stand Still
 The first reason I can attribute to
C#’s struggle is that the Java platform
did not stand still. Many of the ben-
efits that the Java platform delivered
were not solved by moving to C#, the
most significant difference being OS
independence. While C# was in rapid
release mode, the Java platform was
able to fine-tune the language and at
the same time invest heavily in stability
and scalability. At an application level,
the differences are even more marked.
Deploying a .NET service leaves a
company a small choice of application
servers and OS versions. The reverse
is true of Java and J2EE, where there
were almost too many J2EE application
servers to choose from. The market has
now moved to an open source J2EE
application server model, which brings
me to my next point: the open source
movement.

Open Source Changes Everything
 The momentum of the open source
movement has often been document-
ed as being a threat to the proprietary
software market, yet at the same time
analysts have questioned the validity
of a never-ending supply of free labor.
The truth is somewhere in between.
While developers had to get budget
approval for MSDN licenses, their
Java colleagues were able to deploy a
system for free. Now with the advent
of a new crop of open source J2EE ap-
plication servers to follow JBoss, the

justification for a team to spend thou-
sands of dollars on basic develop-
ment tools becomes harder, especially
if it means a choice between deciding
on a new laptop and a renewal of your
existing desktop tools.
 The growth of open source Java
hasn’t stopped there. You only have
to look at Hibernate, the Spring
Framework, and Struts/Shale to see
that developers can work together to
solve their own problems. Being open
source doesn’t necessarily mean those
developers have to work for free;
however; it does provide a way for
individuals and companies to work
together without being restricted by
working group policies or internal
company politics.
 The Mono project, which aims to
provide an open source implementa-
tion of C# and .NET, has also been
around for four years now and is now
part of Novell. Providing the compiler
is only part of the challenge. The .NET
platform uses many Windows ser-
vices that until Mono started didn’t
even exist on Linux. Microsoft has
awoken to the open source move-

ment; how much they will help Mono
is yet to be seen. Mono today is still a
development project much as .NET is
still looking for full traction.

Conclusion
 Is the C# party over? If the plan of
C# was to slow the defection of Visual
C++ developers to Java, then it was
certainly better than nothing. The
long-term savings for Microsoft in
sharing a CLR between projects was
more than worth the initial effort.
However, C# is still not the de facto
choice for Web site or enterprise de-
velopment and other languages such
as Python and PHP, which are bringing
in a new generation of developers who
don’t have a need to migrate Visual
C++ applications. C# isn’t going any-
where soon but its best days may be
behind it.

Core and Internals Viewpoint

Calvin Austin
Core and Internals Editor

C#: Is the Party Over?

O

A section editor of JDJ since

June 2004, Calvin Austin

is an engineer at SpikeSource.

com. He previously led the

J2SE 5.0 release at Sun

Microsystems and also led

Sun’s Java on Linux port.

calvin.austin@sys-con.com

������������������

� ���

���
���
���
���

� ������� ��
��������������������������������������

� ������� ��
���
��������������������������

� ���� ���
���

��

����� ��������� ���� � �

��������������������������������������

�����������
�������������������

�����
�������������������

�������������������
�����������������

�����������������

������������������

� ���

���
���
���
���

� ������� ��
��������������������������������������

� ������� ��
���
��������������������������

� ���� ���
���

��

����� ��������� ���� � �

��������������������������������������

�����������
�������������������

�����
�������������������

�������������������
�����������������

�����������������

JDJ.SYS-CON.com34 August 2005

ver the past 12 months, I have
observed significant benefits
using the Unified Modeling
Language (UML) when devel-

oping Rich Internet Applications using
Macromedia’s Flash Platform and JRun
(Java application server).
 This article first discusses what the
UML is, then lists some of the main
diagram types. It highlights how these
diagrams can be used and draws at-
tention to some of the benefits I’ve
observed when using them. It concludes
with a list of resources.

What Is the Unified Modeling Language
 To understand the essence of the
UML, consider the elements of its
name:
• Unified: The result of unifying three

leading approaches to system mod-
elling in the 1990s

• Modeling: concerned with the sim-
plified representation of system
structure and behavior

• Language: A language, not a meth-
odology

 The UML provides a language-neu-
tral, tool-supported, well-documented
standard for modeling systems such
as Web applications. It enables system
requirements, structure, and behavior
to be succinctly captured and effectively
communicated.
 At the time of writing this article, the
UML 2.0 Specification is going through
final editing, although you’ll find that
many books and tools support at least a
subset of this specification. A draft ver-
sion of the specification is available on

the Object Management Group’s UML
Web site. Helpful note – don’t try and
learn the UML from this document, but
it can make interesting reading!
 The UML is not a methodology. This
point is important. Some people think
that you have to use every diagram type
to model every aspect of system be-
havior all the time as part of a complex,
cumbersome approach. Not at all. Sim-
ply make intelligent choices about what
works for you. The UML is designed to
serve you, not the other way around.
 To illustrate this point, consider the
Java programming language. Java is a
language, not a methodology. To derive
full benefit from your use of Java, you
adopt an effective methodology. You
may adapt your approach on differ-
ent projects. You use a subset of Java to
build an application. You don’t try and
use every feature of the language in
every application you build.
 In the same way, blend the UML into
the successful methodology you already
use.

Main Diagram Types
 Essentially, when you use the UML,
you draw diagrams and add notations
to them. You may draw a UML diagram

by hand on the back of a menu over
lunch with a client or on a whiteboard.
Equally, you may use a tool such as
MagicDraw UML.
 There are two main categories of
UML diagrams defined by the UML 2.0
Specification:
• Structure Diagrams (six):

Concerned with modeling static
structure (architecture)

• Behavior Diagrams (seven):
Concerned with modeling dynamic
behavior

 I have found the following diagrams
most useful since I began using the
UML 12 months ago:
• Use Case Diagram (behavior)
• Activity Diagram (behavior)
• Class Diagram (structure)
• Sequence Diagram (behavior)

 Using these four diagrams in se-
quence has been very effective, so I will
address each in turn.

Use Case Diagram
 Use case diagrams help to define
the requirements of a system from the
user’s perspective – what they want to
achieve when using the system.
 The use case diagram is deceptively
simple yet incredibly powerful. Notes
are added to the diagram, and may
of course be supplemented by other
documents where appropriate. This is
exactly what architects and engineers
in other disciplines do too, of course
– use blueprints and drawings.
 The user may be a human object or
software object (if you are developing

Diagrams

by Duncan Jack

Observed Benefits of the
Unified Modeling Language

O

Duncan Jack is the

founder of Scottish Java

(www.scottishjava.com), a

brand new Java community.

He is also involved in research

to develop systems that

will assist in measuring,

monitoring, and managing

organizational quality with

the aim of improving business

performance. This research

leverages his 20 years of

successful commercial

experience in civil engineering,

financial services, and the

U.S. oilfield.

duncan@scottishjava.com

The UML is designed to serve you

 Figure 1 User Case Diagram

Booking Systems

:User

:User Case Diagram

Check Availability

Book Ticket

The UML provides a language-neutral, tool-supported,
well-documented standard for modeling systems such as Web applications”“

35August 2005JDJ.SYS-CON.com

a Web service in Java for example). The
basic syntax is very simple (see Figure
1).
 As you can see from the diagram in
Figure 1, the system is required to let
a user check availability and book a
ticket. Notice that the diagram does
not go into the detail of how this will
be accomplished. It helps them focus
on desired outcomes and not the
process. For me, that’s the power of
use case diagrams – focusing minds
and drawing out detail. Of course, it’s
important to remember that clients
may:
• Not know exactly what they want or

need.
• Be reporting to a boss who has given

them unclear, incorrect, and incom-
plete requirements.

• Be part of a wider team among
which requirements are fragmented.

• Forget or contradict their own
requirements.

 I have noticed a number of business
benefits when using use case diagrams.
It’s the simplicity of the diagram and the
practice of going through the process
with a client that really pays off. I’ve
noticed that these diagrams help to:
• Discover what clients actually want

and need
• Draw in other stakeholders (the

boss, co-workers, etc.) to the
requirements gathering process on
an ongoing basis

• Identify any correct and contradic-
tion in requirements

 I was recently involved in a project to
build a Rich Internet Application for a
business run by three extremely capable
directors in their 50s. They found the
use case diagram indispensable. At ev-
ery meeting, the first thing we would do
was review it, to confirm that all require-
ments had been captured and were fully
up to date.
 As additional requirements were
identified, these were either added
into the current version or added to a
list for future discussion. Either way, it
was up to the clients to decide. The use
case diagram was a living, breathing
document that provided an ideal way to

ensure that the interface with the clients
remained cohesive.
 Letting them each have a copy of
the diagram that they could mark up
and use in their own internal meetings
proved to be a very effective way to draw
everybody in and ensure we built the
right system.
 We became a natural extension of
their business; they became a natural
extension of our project team. As a
result, meetings were more productive,
a better application was delivered more
quickly, and business was stored up for
the future. In addition, our approach
helped us to differentiate ourselves from
our competition and ensure a strong
ongoing relationship with the clients.

Activity Diagram
 Once the requirements of a system
from the users’ perspective have been
defined, activity diagrams help to
define how this user experience will be
achieved.
 Activity diagrams are also extremely
powerful. They are well suited to flesh-
ing out the details of a use case by mod-
eling the detailed interaction between
a user and a system or screen. Activity
diagrams are used to model:
• Business processes.
• Flow of control in an executing

program.
• Details of a method.

 They are a close relative of the
traditional flowchart (see Figure 2). As
you identify and diagram the different
activities, you’ll naturally see a pattern
of objects emerge to which the different
activities can be assigned. You can use
the swim lanes to assign responsibili-
ties to different objects – whether those
objects are people or software.

Class Diagram
 Class diagrams are used to model the
classes of objects in a system (people
and software). In the context of this
article, the software building blocks are
likely to be Java classes.
 Think of a class – it has properties (at-
tributes and associations) and methods
and can be represented as shown in
Figure 3.

 The Order class has an orders prop-
erty, which is an array of order items,
each one represented by an OrderItem
object. Although this could simply
have been shown as an attribute in-
side the class, it’s often more meaning-
ful to represent such a property using
an association as above.
 On this point, I found Martin
Fowler’s excellent book, UML Distilled,
particularly helpful. I highly recom-
mend it. He goes into class diagrams
in some detail and wisely splits his
coverage into two chapters, focusing
the first chapter on the essentials.
 Class diagrams seem to follow so
naturally from activity diagrams; the
activities identified often may neatly
correspond to methods in a class
diagram, which helps save time and
increase productivity.
 There is, of course, no requirement
to identify every property or method
on a class in a class diagram. You may
choose to show only public methods
for example. Equally, you don’t have
to show all classes and relationships
between them. Again, use what works
for you.

 Figure 2 Activity Diagram

User

Submit Order

System

[not available]

[available]

Activity Diagram

Choose Dates

Check Availability

Make Booking

Inform User

Java is a language, not a methodology. To derive full benefit
from your use of Java, you adopt an effective methodology”“

JDJ.SYS-CON.com36 August 2005

 Class diagrams really help when
architecting the system and seem to
give the design “room to breathe.” It
seems that if the design is elegant, the
implementation is elegant too. If the
implementation is elegant, it can be
more pleasurable and cost-effective
to evolve and maintain on an ongoing
basis once the system has been put
into production.
 In Ian Sommerville’s definitive work,
Software Engineering, he cites (and
qualifies) research that suggests up
to 90% of software costs are evolution
costs. Looking at this another way, if
all you build for a client is the initial
implementation of a system, you
may only be getting as little as 10%
of the revenue stream that you would
otherwise get from that client over the
lifetime of the system. Of course, these
figures will vary significantly, but it’s
an interesting thought.
 If you build a system that can be
evolved elegantly and cost effectively,

you’re more likely to keep the relation-
ship with the client, give them a better
service, and make more money. Class
diagrams are great for organizing
where functionality will go, and for
helping to select consistent and mean-
ingful property and method names.

Sequence Diagram
 Have you ever developed an applica-
tion and then had to come back and
modify it six months later and tried to
work out how on earth you did it? Well,
the UML sequence diagram may be
able to help you.
 A sequence diagram models the
sequence of interactions between ob-
jects. In some ways, it a close cousin
of an activity diagram, yet focused
more on the behavior of software
objects on a timeline (see Figure 4).
 Sequence diagrams are great for
thinking through a design, illustrat-
ing an idea, and also getting back up
to speed when changes need to be
made six months or so after the system
has gone into production. The design
stands out so clearly.
 Prior to finding out about the
UML, I used my own non-standard
diagrams. For me, the biggest single
benefit of the UML has been the
sequence diagram.
 In the UML modeling tool I use,
MagicDraw UML, I typically have a
class diagram open at the same time
as a sequence diagram. As I work on
the design and identify additional
methods, I add these to the appropri-
ate class. These methods are then
immediately available for me in the
sequence diagram. As a result, it’s
much easier to create an elegant
design and enhance productivity. An-
other powerful feature of MagicDraw
UML is that it enables me to generate
all the framework code in Java from
the UML model at the click of a but-
ton (equally, I can reverse engineer a
sequence diagram from Java code).
 It also ensures that the design is
the documentation, which ensures
that the documentation is done as the

design evolves, changing with it. The
appropriate use of annotated UML
diagrams can save time, which is a
significant business benefit.
 In addition, it becomes a pleasure
to come back and add additional
functionality at a later date.

Getting Started with the UML
 Here’s what worked for me and what
I generally suggest to anyone interested
in getting started:
• Get a tool such as MagicDraw UML

(free community edition and trial
available). Tools have a lot of intel-
ligence built in, which helps you get
up to speed quickly on a couple of
diagram types. The tool knows the
specification. Have a look at the var-
ious symbols available in one or two
of the main diagram types described
above. Start using some of the sym-
bols; you don’t have to use them all.
Grow into the tool over time. Learn
the structure of the documentation
and start reading it.

• Get Martin Fowler’s book, UML
Distilled. Read it a couple of times.
It’s a great book, aptly titled. I found
Martin’s real-world experience and
balanced view of using the UML very
helpful.

 Remember that the UML is a
language, not a methodology, so don’t
think you have to change everything
you already do successfully in order to
get started with the UML. Take it one
diagram at a time. Used effectively, the
UML offers significant benefits.

Resources
• MagicDraw UML (includes compre-

hensive documentation and exam-
ples): www.magicdraw.com

• Fowler, M. (1999). UML Distilled.
Addison-Wesley: www.pearsoned.
co.uk/Bookshop/

• Sommerville, I. (2004). Software
Engineering 7. Addison Wesley:
www.pearsoned.co.uk/Bookshop/

• UML 2.0 Specification and useful
links: www.uml.org

Diagrams

 Figure 3 Class Diagram

Order

Class Diagram

OrderItem

customerId
totalGross
totalDiscount
totalNet

calculateDiscount()

eventId
name
description
image
price

orders

1 *

 Figure 4 Sequence Diagram

: OrderManager : AvailabilityManager

1 : manageOrder ()

2 : checkAvailability ()

3 : return

Sequence Diagram

For me, the biggest benefit of the UML has been the
sequence diagram”“

JDJ.SYS-CON.com38 August 2005

his rather pedagogically worded
article is a collection of my
thoughts on debugging Java
software, the programming pat-

terns I have used, some useful APIs, and
techniques.
 What it is not – it’s definitely not
complete in terms of information on
debugging, its techniques, styles, etc.
It’s primarily a list of things that have
worked for me time and again and a
few tools that I keep in my toolkit to use
when the situation demands it. I think
they will be of use to you as well.
 I have been fortunate to work in
environments where I touched upon
various facets of Java, used various
APIs, and generally did extremely satis-
fying work. In all these years, debug-
ging has stood out as an activity that
everybody has to perform almost as
much as they code or design. I have no-
ticed time and again that being able to
debug well is an extremely useful skill.
It can be learned over time and honed
and it is, to a large extent, the ability
to match problem patterns to past is-
sues. People like Rajiv (www.me.umn.
edu/%7Eshivane/blogs/cafefeed/) can
uncannily pinpoint a problem’s cause
when they hear its description. This
ability comes from years of experience
and the intent to learn from every new
debugging experience.

Debugging
 Debugging is the act of locating and
fixing a flaw in software. A flaw can
manifest itself in multiple ways. Some-
times it’s apparent, for example, when
the program crashes or does not do the
intended action or does not return the
intended result. Sometimes it is hard to

say what’s wrong when a program does
not return, the CPU keeps processing
something, or when the program does
something unexpected in addition to
the right action. Debugging, of course,
is the action we take post having seen a
flaw.

Isolating the Problem to Code:
Identifying Where to Look for a Problem
 The problem or flaw appears as a
failure of the software to do something
it should have. When you encounter
a flaw, to debug it you need to form a
mental model of the code to identify
where the code is that failed. Debug-
ging largely follows the process of
elimination and this process is helped
by any symptoms that you can find.
 When you have the piece of code
that failed, you try and find the cause
by asking and answering questions
– what is occurring? What possible
causes could result in this problem?
For example, if something should
have happened and it didn’t, perhaps
the code was not reached. Why would
the code not be reached? Maybe the
if condition under which the method

gets called did not evaluate to true or
perhaps the if (something != null) check
was called when something had the
value null.
 Another example: if there is an excep-
tion, then there is additional informa-
tion about the location of failure and the
steps that led to it. The type of exception
will tell you the nature of failure. So if
you see a ConcurrentModificationEx-
ception thrown by an Iterator’s next()
method, you will have to:
1. Find out under what conditions this

happens.
2. How could these conditions have

been created in your program?
3. Maybe you removed something

using list.remove() in your loop, or
perhaps you passed reference to
the list to some other thread that is
modifying it.

 Once you have a mental picture of
the surroundings of the problem and
why it might be occurring, it’s a matter
of eliminating the reasons one by one
starting from the most likely cause.
 Even if you intend to use a debug-
ger, this is a necessary step. You have
to always backtrack mentally from the
point of failure to locate all possible
causes of failure. A lot of debugging
skill relies on this one ability alone.

Reading an Exception
 Java Exceptions have a lot of infor-
mation in them and should be well
understood to debug problems. Often,
I’ve noticed programmers use the fol-
lowing template for exceptions.

try {

// do stuff here

Techniques

by Sachin Hejip
Reflections on Debugging

T

Sachin Hejip, an architect with

Sonic Software, is currently part

of Sonic’s ESB tooling initiative

where he is leading a team of

engineers to develop Eclipse

plug-ins to take Sonic ESB

development to the next level.

A recipient of Pramati’s highest

award for technical excellence,

the Pramati Fellowship, he has

been a core member of the Pra-

mati engineering team where

he led the Web Server intiative

and has been a key member of

the Pramati Studio R&D team.

sachin.hejip@gmail.com

Matching problem patterns to past issues

I have noticed time and again that being able to debug well
is an extremely useful skill”“

39August 2005JDJ.SYS-CON.com

} catch(Exception ex) {

System.out.println(ex);

}

 If you wish to print the excep-
tion to know when a problem has
occurred, you must consider using
ex.printStackTrace(). There are multi-
ple advantages:
• When using System.out.println(ex),

several times no message is prin-
ted other than the class name
of the exception that occurred.
Imagine having this piece of
code in multiple locations;
how will you ever know which
catch handler printed java.lang.
NullPointerException?

• An exception when printed stands
out in a log file or the console.
It’s several lines long and just the
pattern of an exception stack
trace print is so different from the
other message; it’s much easier to
find than an exception message that
looks like other logging statements.

• Following JDK1.4, chained excep-
tions get printed as well and you

don’t have to manage them manu-
ally. Root cause gets carried along
with the exception.

• Last and most important, the stack
trace contains a wealth of informa-
tion that can be used to create a
mental picture of what happened.

 There have been lots of times when
I have looked at a stack trace and said:
it should not have come here and been
able to trace the problem to a wrong
check in an earlier part of the code.
You must know how to read an excep-
tion. Here’s a Java exception printed
out.

: Output generated by System.out.println()

:

java.lang.ArrayIndexOutOfBoundsException: 0

: Output generated by ex.printStackTrace()

:

java.lang.ArrayIndexOutOfBoundsException: 0

at com.sonicsw.tools.test.ThrowException.

processArgs(ThrowException.java:32)

at com.sonicsw.tools.test.ThrowException.

main(ThrowException.java:21)

1. java.lang.ArrayIndexOutOf-
Bounds-Exception: 0
 The first part of printStackTrace
is to do a print out of the exception
similar to the System.out.println, so
already you’ve gotten that for free.
This part of the exception stack trace
is formatted according to the type
of exception, and the information
printed varies from exception to
exception. Some exceptions print
nothing more than the class of the
exception. Some exceptions (spe-
cially custom ones) print a lot of
context information that led to this
exception.

2. at com.sonicsw.tools.test.Throw-
Exception.processArgs(ThrowExcept
ion.java:32)
 The rest of the exception is the
stack trace starting with the location
that threw the exception at the top,
and the caller of the method in
which the exception was thrown
below it, and so on until the execut-
ing thread’s run method or the main
method. The information provided

JDJ.SYS-CON.com40 August 2005

on this line consists of:
• The fully qualified class name: com.

sonicsw.tools.test.ThrowException
• The method: processArgs
• The file: ThrowException.java
• Line number: 32

 Obviously, these are great nug-
gets of information. In some cases,
when compilation does not include
debugging information, you can end
up with stack traces that don’t have
line numbers. That’s usually a bum-
mer but at least you have the stack of
methods to locate where the problem
occurred.
 Other variations for method names
are <clinit> for a static initializer
– (this is also an example of exception
chaining - note the “Caused by:”):

java.lang.ExceptionInInitializerError

Caused by: java.lang.

IllegalArgumentException

at com.sonicsw.tools.test.ThrowException.<c

linit>(ThrowException.java:21)

<init> for constructors and initializers:

java.lang.IllegalArgumentException

at com.sonicsw.tools.test.ThrowException.<i

nit>(ThrowException.java:20)

at com.sonicsw.tools.test.ThrowException.

main(ThrowException.java:24)

and the $number convention for anony-
mous classes:

java.lang.IllegalArgumentException

at com.sonicsw.tools.test.ThrowException$1.

actionPerformed(ThrowException.java:25)

at com.sonicsw.tools.test.ThrowException.(T

hrowException.java:23)

at com.sonicsw.tools.test.ThrowException.

main(ThrowException.java:31)

 Of course, if the line number is avail-
able, it makes it a lot easier.
 Sometimes, to understand why
an exception occurred, you have
to understand how control got to
that point. The easy exceptions are
always the ones that have a localized

problem and you can easily catch the
problem by the exception. But things
can get really hard, for example, the
culprit could lie several methods
below and might not even be caused
in this thread of execution. A previ-
ous event might have generated a
bad value that was stored in a field
and was picked up by this thread of
execution in which the exception oc-
curred. To get to the bottom of these,
you need to create a mental back map
of methods and events that might
have occurred. It always helps to see
what methods were called to get to
the point of failure.

Trapping Exceptions
 Sometimes, something you expect-
ed to execute does not occur and there
is no information on why it failed. For
some reason, control got transferred
out of your method. Once you have
eliminated any if conditions that are
failing, it could be an exception get-
ting thrown from somewhere deep
inside your code. No exception gets
printed though. This usually happens
when you’re implementing a piece
that fits into a framework. Perhaps
the framework has a logging switch
that’s set too low for exceptions to get
printed, or the framework is faulty
and is not printing exceptions being
thrown by overridden methods. May-
be the framework is failing because
of the unexpected exception being
thrown by your method. In such cases,
it’s best to eliminate this possibility
by wrapping the entire method by a
try-catch block. For such debugging
situations, I prefer to wrap with a try
… catch(Throwable t) block because
you want to be sure that no exception
or error is being thrown. Sometimes,
when errors get thrown (such as a
NoClassDefFoundError because of a
faulty classpath) it will slip through all
catch(Exception) blocks.
 Debugging is often an exercise in
eliminating possibilities and locating
the faulty piece of code. This is one
technique to achieve that.

When to Use Thread.dumpStack
 Another neat tool to keep in your
toolkit is using Thread.dumpStack()
or equivalently new Exception().
printStackTrace(). Either of these
methods do a printStackTrace() at
this line without actually throwing
an exception. The usual reason you
do this is because you want to know
what caused control of execution to
come to this point. This can identify
problems caused by a method being
called unexpectedly.

Using VM Thread Dumps and
Understanding Them
 My biggest complaint with a lot of
experienced Java developers is that they
have never heard of the most amazing
debugging tool called the VM Thread
dump. You can use this technique in
innovative ways:
• To detect deadlocks
• To diagnose UI hanging problems
• To diagnose slow UI issues
• To diagnose spinning/infinite loops
• For quick and dirty profiling
• To get an understanding of what the

VM is doing at that instant

 I can’t do better than this excellent
article on this topic available at www.
me.umn.edu/%7Eshivane/blogs/cafe-
feed/2004/06/of-thread-dumps-and-
stack-traces.html.

Classpath Problems
 Another class of problems are class-
path issues. There are times when you
are not sure if there is another version
of a class in the classpath that is get-
ting picked up before yours, usually a
result of a bad environment setup. To
eliminate this possibility, a simple check
is to add a print statement to see if your
new code gets picked up. If it isn’t get-
ting picked up, you need to locate the
other class that is getting picked up. One
neat API in Java that allows you to locate
where a class is being picked up is:

Class.getProtectionDomain().getCodeSource().

getLocation()

Techniques

When you encounter a flaw, to debug it you need to form a
mental model of the code to identify where the code is that failed”“

41August 2005JDJ.SYS-CON.com

 In most cases, depending on the class loader being used,
you’ll get the location of the class that is being executed
and you can correct your environment setup.

When to Use a Debugger and
When to Print
 There are times when you should use a debugger and
there are times when a print statement is more useful. You
can use what is very well described by the brilliant pieces
of work mentioned in the references section. The point
I want to make here is that you must know what can be
achieved using a debugger. It’s an extremely powerful tool
and can reduce debugging time quite a bit. It’s appli-
cable in many cases but is not suitable for a certain set of
problems, such as threading issues or issues that show up
in long-running tasks, in which case a log with good print
statements is essential.

Good Debug Printing
 Once you have a mental checklist of what the causes
might be, you need to eliminate them. Debug prints can tell
you quickly if your assumption is right or wrong. Ensure that
your debug prints are not causing any side effects inadver-
tantly, for example:

System.out.println(“value.getCode() = “ + value.getCode());

if (value == null)

return;

switch(value.getCode()) {

…

}

 It’s important to print sufficient information about the
object you are interested in. Perhaps your code is falling
through a switch statement without firing any of the case
clauses. You’ll need to print the value of the switch condi-
tion. Think a little before you decide to type in any debug
print statements. Often, when using good debug print
statements, the code gets peppered at useful locations with
debug statements that can be switched off with a boolean
for future use. An easy to use pattern is:

private static boolean DEBUG = Boolean.getBoolean(“<classname>.
debug”).booleanValue();

 If the class is com.test.ArgumentsProcessor, you would
write

private static boolean DEBUG = Boolean.getBoolean(“com.test.

ArgumentsProcessor.debug”).booleanValue();

 The advantage is that you can switch on debugging for this
class without recompiling anything by specifying

Dcom.test.ArgumentsProcessor.debug=true when starting your
VM, e.g., java -Dcom.test.ArgumentsProcessor.debug=true <main-
class> <args>.

 However, the compiler will not remove your debug state-
ments during code optimization in this case.

Using Logging
 There is not much that I can add on using logging that is not
already covered by a vast amount of material. You can take a
look at the References section below for other information on
this subject. The point I would like to make here is that when
you are writing print statements that go to a log for debug-
ging purposes, maybe as a patch to a customer to diagnose a
particularly tricky problem, think about how the log file might
look when it’s sent to you. What we think the output would be
like when we write log print statements changes dramatically
in a live system with multiple threads executing the same log
messages. Maybe you need to print the thread ID to bunch
all logs or an operation together, or perhaps some business
data structure ID needs to be printed with each statement to
understand what’s happening. You may need to print out the
execution path leading to the suspected problem location to
know what conditions caused control flow to get there. An-
other thing to keep in mind is that log files can get so verbose
and have so many messages that it becomes very difficult to
scan them for problems later.

References
• Kernighan, B., and Pike, R. (1999). The Art of Programming.

Addison-Wesley Professional. Highly recommended reading.
• Read, R.L. “How to Be a Program-mer.” The first chapter is

on debugging and is really well written: http://samizdat.
mines.edu/howto/HowToBeAProgrammer.pdf

JDJ.SYS-CON.com42 August 2005

spect-Oriented Programming (AOP) is a new,
thought-provoking architecture paradigm still
in its youth. One of AOP’s primary goals is to
improve the development of object-oriented
systems by refactoring related lines of code that

are typically found spread among classes (and are there-
fore difficult to maintain).
 These blocks of related code represent functional
“aspects” of the system, which now can be written in
a single place and then “woven” into the target applica-
tion. Logging the start and end of all method calls,
securing method calls, and handling thrown exceptions
are all commonly found aspects. While AOP provides an
interesting and effective methodology for refactoring as-
pects out of code, how to implement these aspects is still
left up to the developer. This article discusses a strategy
for building a more easily maintainable, compartmental-
ized exception handing subsystem using a declarative
chain of responsibility pattern and some concepts from
aspect-oriented development. Many of the concepts
discussed here have been implemented in an open source
project called “Prob-lo-Matic” (http://problomatic.
sourceforge.net).
 As a consultant working on a wide spectrum of proj-
ects for various companies, I’ve found that subsystems
specifically designed for exception handling (an aspect
found in every project) can be strangely rare in the busi-
ness world. There are few if any vendor products available
that are “generic, full-featured exception handling suites.”
When exception-handling frameworks are home grown, as
they often are, they usually contain a lot of difficult logic
(causing more problems than they fix). There seems to be
a wide variety of monitoring software that act as excellent
exception detection and alerting tools but, in practice,
few frameworks that provide application developers with
structured, robust error-correction tools for use within
their software packages.
 For simple error handling, such as checking some
variables or attempting to access an I/O device, the Java
try/catch/finally system works fine. When an error occurs,
there is usually no alternative but to handle the low-level
exception inline and return some status to the calling stack
frame. However, in modern distributed systems, there are
more intricate requirements for error handling. Robust

applications are required to retry failed steps, notify
components of failures, and produce logging statements.
First-rate application design demands a generic, plug-
gable exception-handling framework for our distributed
systems. A declarative chain of responsibility pattern can
act as the foundation for building such a system, and AOP
can give us a powerful non-invasive way to integrate such
a system with our code.

Chain of Responsibility (a.k.a. Chain of Command)
 The chain of responsibility pattern’s intent is to “avoid
coupling the sender of a request to its receiver by giving
more than one object a chance to handle the request”
(Gamma, et al. Design Patterns). Essentially, a message
object is passed through a chain of objects implement-
ing a common interface. The interface includes methods
to chain the handler together, i.e., get- and setSuccessor
methods:

public interface Handler {

public void handle(Object message);

public void setSuccessor(Handler successor);

public Handler getSuccessor();

}

 Implementations of this interface use the successor
property to pass the message through the chain, as in:

public class HandlerImplementation {

public void handle(Object message) {

// local handling code here

if (getSuccessor()!=null) {

successor.handle(message);

}

}

}

 Handlers are acquired by the application in some fashion
(more on that later), and execution is branched to the han-
dle’s handle() method. In the case of an exception-handling
framework, we wish to construct an object that encapsulates
all of the information about the state of our application when

Dan Stieglitz is an

independent software

consultant in New York.

He specializes in

designing and developing

distributed applications

in Java and J2EE.

dan@stieglitech.com

by Dan Stieglitz

A
Bringing new challenges
to development

Feature

A Strategy for
 Aspect-Oriented
Error Handling

43August 2005JDJ.SYS-CON.com

an error occurred, as well as information about what to do
for specific errors. For example, if we have implemented a
handler to retry database calls it’s necessary to provide infor-
mation as to where the secondary database instances are. To
do so, it’s useful to create an object tree based on a message
interface that’s understandable by all handlers.

The Problem Interface
 An important part of using the chain of responsibility
pattern is standardizing the interface of the message passed
down the links. If a wrapper around the underlying excep-
tion, error or application-generated warning is applied, in-
formation can be shared among nodes. An example interface
could be:

public interface Problem {

public void setAttribute(String name, Object obj);

public Object getAttribute[(String name);

public boolean hasAttribute(String name);

}

 Implementations of Problem could be created for specific
recurring situations, such as:

public class DatabaseAccessProblem implements Problem { … }

public class ProblemInRequestProcessor implements Problem { … }

public class SecurityProblem implements Problem { … }

 Each specific implementation can store information
that allows for some logic to occur. Coupled with a decla-
rative handler chain (see below), a framework evolves that
allows for robust, extensible generic exception processing
subsystems to be designed and quickly adapted to any
project.

Declarative Programming and Prob-lo-Matic
 Declarative programming refers to the practice of refac-
toring application logic out of the code and into a reference
file. An excellent example of a declarative framework is the
Spring Framework (http://www.springframework.org/),
which allows developers to move dependencies out of code
and into XML files (the pattern on which the framework
is based is called “dependency injection” or “inversion of
control”). A declarative approach facilitates quick system
maintenance and the ability to “hot swap” features of a
deployed application.
 Using the inversion of control pattern makes code very
flexible and is the method used by Prob-lo-Matic to con-
figure the problem handler chains. Any number of formats
could be used to store this information; for example, here is
a Prob-lo-Matic configuration file, which is XML (see List-
ing 1).
 The configuration and instantiation of problem handler
chains is where Prob-lo-Matic adds value. Prob-lo-Matic
basically provides a factory for creating chains-of-com-
mand based on Problem classes. It exposes a static method
void handleProblem(Problem aProblem) that constructs
a chain based on the XML configuration file. This method
then passes the specified Problem to the first link in the
chain for processing. To modify the behavior of the excep-
tion handling in your application, you need only modify
the Prob-lo-Matic configuration file and the changes will be
reflected in your application.

 To use Prob-lo-Matic you could refer to the Prob-lo-Ma-
tic classes in your application. While this is a fine solution
for new or simple applications, we might want to be able to
apply this framework to preexisting code and to do so in a
way that doesn’t disturb the integrity of the existing appli-
cation. This would have been a difficult or impossible task
in the past, but AOP gives us some interesting options for a
clean integration of this framework.

Two AOP Approaches: Spring AOP and
Bytecode Instrumentation
 If you’re new to AOP it may take a while to wrap your
head around the concepts, especially when you see that
the AOP designers have developed a whole new lexicon
of AOP terms to describe the new concepts. This article
doesn’t purport to explain even a fraction of AOP, but we
will glance over a few AOP concepts and discuss the Spring
framework’s implementation of a subset of AOP. Spring’s
implementation can be used to “weave” our error handling
code into our application. We are interested in intercept-
ing thrown exceptions, wrapping them in our Problem
object, and passing them off to handlers. To this end, we
can implement what’s called a throws advice in Spring. This
is implemented using Prob-lo-Matic as in the following
example:

public class ExceptionInterceptor implements ThrowsAdvice {

 public void afterThrowing(Method m, Object[] args, Object target,

Exception ex) {

 Problem problem = new RawProblem(ex);

 problem.setAttribute(“method.name”,m.getName());

 // set other attributes here

 Problomatic.handleProblem(problem);

 }

}

 The drawback with this approach is that our target
object must be a JavaBean and also configured using the
Spring Framework. If this is the case, we can tell Spring to
intercept all thrown exceptions and call the afterThrowing
method. For more information on integrating throws advice
with Spring-enabled beans, see the Spring Framework
documentation on http://www.springframework.org/.
 Alternatively, we can weave this code into our applica-
tion using another technique called bytecode instrumenta-
tion. This involves inserting lines of code into Java classes
with a tool after the javac compiler has compiled them.
Prob-lo-Matic provides such a tool called Problomatic-
Weaver and a corresponding Ant task, WeaveTask. The
ProblomaticWeaver searches for all try/catch blocks in the
specified classes and inserts a call to Prob-lo-Matic before
any other code in the catch block (any code already present
in the catch block is preserved after this call). For example,
the following code fragment is written:

public class MyClass {

public void myMethod() {

Try {

 do();

} catch (Throwable t) {

 System.out.println(t.getMessage());

}

}

Bringing new challenges
to development

JDJ.SYS-CON.com44 August 2005

 After compilation, the Prob-lo-Matic code is woven into
MyClass.class. If this class was decompiled, it would look like
this:

public class MyClass {

public void myMethod() {

Try {

 do();

} catch (Throwable t) {

 RawProblem problem = new RawProblem(t);

 Problomatic.handleProblem(problem);

 System.out.println(t.getMessage());

}

}

}

Practical Example: Retrying Database Calls
 Once Prob-lo-Matic has been integrated into our code,
we can use it to perform a number of useful functions when
exceptions are thrown. A common requirement for reliable
database access is to retry connecting to a database when a
connection fails, or to switch to an alternate database if the
desired database is down for some reason. Consider a set of
implementations of Problem that contain context-specific
callback methods on their source, as defined in an interface
such as:

public interface Recoverable {

 public int getMaximumRecoveryAttempts();

 public int getRecoveryAttemptsCount();

 public void attemptedRecovery();

 public boolean canRecover();

 public void setConnection(Connection con);

 public void setConnected(boolean yesOrNo);

}

 An object that implements Recoverable (see Listing 2)
encapsulates the data and logic required to manage mul-
tiple attempts of some procedure. If our business objects (or
DAOs) implement the Recoverable interface, we can define
a DatabaseProblem that has a reference to our Recoverable
instance. Our ProblemHandler implementation (see Listing 3)
then uses these callback methods to instruct the Recoverable
object how to recover from the problem. In addition, the state
of the recovery (number of times tried, etc.) is managed by the
DatabaseProblemHandler. Our Prob-lo-Matic configuration
looks like this:

<problomatic-configuration>

 <define-chain problem=”com.mypackage.DatabaseProblem”>

 <chain-link

handler=”com.mypackage.DatabaseRetryHandler”

 <chain-link

handler=”com.stieglitech.problomatic.handlers.EmailNotificationHan

dler”/>

</define-chain>

</problomatic-configuration>

 When the execute() method of DatabaseFailover is called
it will attempt to create a connection getMaximumRecov-

eryAttempts() or until isConnected(), whichever comes first.
When an exception is thrown while trying to get a connec-
tion, Prob-lo-Matic is invoked. The DatabaseRetryHandler
will be loaded with the DatabaseProblem passed in, and
callbacks will be made to DatabaseFailover with new con-
nections that are made by the handler. This approach has
given us clean encapsulation of our error-handling logic, and
the ability to easily maintain or augment this logic. Using
AOP, we can weave this functionality into our system with
little impact on the core system code.

Summary
 AOP provides developers with a new and exciting meth-
odology that builds on top of OOP concepts, and tries to
mitigate some of the inherent problems that OOP brings to
large, complex projects. AOP will also bring new challenges
to development, especially when it comes to implementing
aspects in effective and maintainable ways. Error handling
is clearly an important aspect for many applications, espe-
cially those with high reliability requirements. An exten-
sible framework for error handling such as Prob-lo-Matic,
integrated into applications with AOP, can add a good deal
of value to any development effort. Prob-lo-Matic, an open
source work in progress, can be downloaded from http://
problomatic.sourceforge.net/.

Feature

Listing 1

<problomatic-configuration>

<default-properties

<handler=”com.stieglitech.problomatic.handlers.EmailNot

ificationHandler”>

 <property name=”mail.smtp.host”

value=”my.mail.server”/>

 </handler>

</default-properties>

 <define-chain problem=”com.stieglitech.problomat-

ic.problems.RawProblem”>

 <chain-link

handler=”com.stieglitech.problomatic.handlers.

SystemPrintlnHandler”/>

 <chain-link

handler=”com.stiegltiech.problematic.handlers.EmailNoti

ficationHandler”/>

</define-chain>

</problomatic-configuration>

Listing 2

public class DatabaseFailover implements Recoverable {

 private int recoveryAttempts = 0;

 private java.sql.Connection con;

 private boolean isConnected = false;

 public void attemptedRecovery() {

 recoveryAttempts++;

 }

 public boolean canRecover() {

 if (getRecoveryAttemptsCount() < getMaximumRecovery-

Attempts()) {

 return true;

 } else {

45August 2005JDJ.SYS-CON.com

 return false;

 }

 }

 public void doDatabaseWork() { // insert, delete, update,

whatever }

 public void connectToDatabase() {

 try {

 con = DriverManager.getConnection(PRIMARY_DB_URL, DB_

USER,

 DB_PASS));

 } catch (SQLException e) {

 DatabaseProblem prob = new DatabaseProblem(e);

 prob.setSource(this);

 Problomatic.handleProblem(prob);

 }

 }

 public void execute() {

 while (canRecover() && !isConnected()) {

 connectToDatabase();

 }

 doDatabaseWork(getConnection());

 closeConnection();

 }

 public void setConnection(Connection con) {

 this.connection = con;

 }

}

Listing 3

public class DatabaseRetryHandler

implements com.stieglitech.problomatic.ProblemHandler {

 public void handleProblem(Problem aProblem) {

 if (aProblem instanceof DatabaseProblem) {

 DatabaseProblem dbProb = (DatabaseProblem) aProblem;

 Recoverable source = (Recoverable) dbProb.getSource();

 Connection con = getAlternateConnection();

 if (con!=null) {

 source.setConnection(con);

 source.setConnected(true);

}

else {

 source.setConnected(false);

}

source.attemptedRecovery();

 }

 }

 private Connection getAlternateConnection() { // get alter-

nate connection }

}

JDJ.SYS-CON.com46 August 2005

ver the past few years, the
Enterprise JavaBeans (EJB)
specification has evolved
significantly. In the early days

of EJB, application developers faced a
burden of overwhelming complexity:
they had to manage several component
interfaces, deployment descriptors,
and unnecessary callback methods;
work within the limitations of the EJB
Query Language (EJBQL); and learn
and implement the design patterns
used to overcome the limitations of the
specification.
 The introduction of the EJB 2.1 speci-
fication did improve things, although
many still say the specification is too
complex – and that criticism is often
seen as a reflection of the problems of
the entire J2EE platform.
 The next major release of the J2EE 5
platform is focused on ease of develop-
ment. As a cornerstone of the platform,
much of the effort centers on reducing
the complexity of EJB. The EJB 3.0 speci-
fication simplifies development by re-
moving the requirements for interfaces,
deployment descriptors, and callback
methods and by adopting regular Java
classes and business interfaces as EJBs.
 The specification also leverages meta-
data annotations that are standardized
with JSR-175, and the proven Plain Old
Java Object (POJO) persistence archi-
tecture used by object-relational (O/R)
frameworks such as Oracle TopLink and
Hibernate. These last two features have
greatly reduced much of the specifica-
tion’s complexity. Now you can take a
regular Java class, add annotations to it,
and deploy it to an EJB 3.0 container as
an entity. A configuration by exception
approach is taken so that the container
accepts the defaults whenever possible.

Sample Entity Bean with Annotations

@Entity

@Table(name=”PLAYER”, schema=”CMPROSTER”)

@NamedQuery(name=”findAll”,queryString=”SELE

CT OBJECT(p) FROM Player p”);

public class Player implements Serializable

{

 @Id

 @Column(name = “ID”, primaryKey = true,

nullable = false)

 public String getId()

 {

 return id;

 }

//………………..

}

 The features I’ve mentioned above
are only the tip of the iceberg – the EJB
3.0 specification provides a slew of new
features and enhancements.
 This all sounds great on paper, but
I wanted to find out just how much
easier it is to develop applications with
EJB 3.0. So, I decided to give the specifi-
cation a spin and see for myself. I chose
an existing EJB 2.1 application that
implements some common use cases
with design patterns such as a Session
façade, and migrated the application
using the new features of EJB 3.0. I used
the publicly available demo applica-
tion RosterApp (included with the J2EE
1.4 tutorials), which lets you maintain
team rosters for players in leagues.
 I took the bottom-up approach to
migrate RosterApp with EJB 3.0 technol-
ogy, starting with:
• Entity beans
• Data transfer objects (DTO)
• Session bean
• Utility and client classes

Migrating the Entity Beans
 RosterApp has three entity beans:
LeagueBean, TeamBean, and Player-
Bean. Instead of taking the existing
beans, deleting the home and local
interfaces, and converting the abstract
methods to getter and setter methods
with annotations, I reverse-engineered
the RosterApp tables from an Oracle
Database 10g as EJB 3.0 entities. My
result was three simple POJOs (League,
Player, and Team) with a set of default
annotations. All I had to do was add

annotations for the many-to-many
relationship between Player and Team.
The annotations look like Listing 1.
 The EJB 3.0 specification lets you
specify O-R metadata via annotations.
It provides a wide range of annotations
that cover different types of relation-
ships between POJOs, constraints,
column information, sequence gen-
erators, composite primary key, and
inheritance.
 Once you migrate all the O/R map-
pings as annotations in the POJOs, the
next step is to convert a bunch of finder
methods with EJBQL from EJB 2.1 to
new POJOs. Most of these finder meth-
ods were already defined for the player
bean. EJB 3.0 provides the Named-
Queries annotation to group together
individual NamedQuery objects. I took
all the EJBQL from the existing ap-
plication and created a NamedQueries
annotation, which looks like Listing 2.
 The EJB 3.0 specification provides
a Query API that can be used for both
static and dynamic queries. A named
query can be defined as a standalone
query or attached to a query method of
the bean class. You can define named
queries in EJBQL or SQL. This is a boon
for Java developers familiar with SQL
syntax, as they can become EJB devel-
opers without having to learn another
query language.
 Mappings and finders covered almost
90–95% of the entity bean migration.
The remaining part of the project
consisted of ejbSelect statements and
methods that perform add and remove
operations on the Team POJO. I needed
to simplify these methods. The following
code shows one of the methods before
and after migration. ejbSelect methods
were migrated as NamedQuery in the
Session facade (which is discussed later
in this article).

// remove operation on Player before migration

public void dropPlayer(Player player)

{

Specifications

by Raghu Kodali

The Simplicity of EJB 3.0

O

Raghu R. Kodali is consulting

product manager and SOA

evangelist for Oracle Application

Server. He leads next-generation

SOA initiatives and J2EE feature

sets for Oracle Application

Server, with particular expertise

in EJB, J2EE deployment, Web

services, and BPEL. Prior to

product management, Raghu

held presales and technical

marketing positions in Oracle

Asia-Pacific, based in Singapore.

Prior to Oracle, he worked

as asoftware developer with

National Computer Systems,

Singapore. He holds a master’s

degree in computer science and

is a frequent speaker at

technology conferences. He

maintains an active blog at

Loosely Coupled Corner.

A step in the right direction

���� �����

��������������������
����������������������

��� ����
���������

��� �����������������������

���������������������������

�����������������������

����������������������������

����������������������

�������������������������

��������������

�������������������������������� ��������������������

��������������������������������������

�������������������
�����������������

���������������������������������
����������������� �����

���� �����

��������������������
����������������������

��� ����
���������

��� �����������������������

���������������������������

�����������������������

����������������������������

����������������������

�������������������������

��������������

�������������������������������� ��������������������

��������������������������������������

�������������������
�����������������

���������������������������������
����������������� �����

JDJ.SYS-CON.com48 August 2005

Debug.print(“TeamBean dropPlayer”);

try {

Collection players = getPlayers();

players.remove(player);

}

catch (Exception ex) {

throw new EJBException(ex.getMessage());

}

}

//remove operation after migration

public void dropPlayer(Player player) {

Debug.print(“TeamBean dropPlayer”);

getPlayers().remove(player);

}

Migrating DTOs
 DTOs are the next layer in RosterApp.
The entities in EJB 3.0 are POJOs; you
can directly transfer them between
the business and client tiers without
first having to create a separate set or
layer of classes as in EJB 2.1. The exist-
ing RosterApp used DTOs to transfer
Teams, Players, and Leagues data col-
lections between the client and Session
facade. The new EntityManager API
in the EJB 3.0 persistence specifica-
tion, which is used to create, remove,
find, and query entities, works nicely
to attach and detach objects from
the persistence context. The Entity-
Manager’s merge operation lets you
propagate state from detached entities
onto persistent entities managed by the
EntityManager.
 The EJB 3.0 RosterApp didn’t require
the existing DTO baggage, but I had
to make sure that the Team, League,
and Player POJOs implemented java.
io.Serializable. I also had to get rid of
extra methods such as getPlayersofT-
eamCopy() in the Session facade of the
EJB 2.1 RosterApp, which were do-
ing the grunt work of managing data
between DTOs and entity beans. On top
of eliminating the extra overhead, I had
to simplify the business methods in the
Session façade of the EJB 3.0 Roster-
App, as they were using DTOs all over
the place. Listing 3 shows the sample
migrated code.

Migrating the Session Beans
 After eliminating the DTOs from
RosterApp, I migrated the Session façade
(RosterBean). First, I had to remove the
home interface and clean up the remote
interface to make it a business interface.
To do so, I made sure the interface wasn’t

extending EJBObject and was annotated
with @Remote. I annotated the bean
class with @Stateless. The RosterBean
in EJB 2.1 had a number of business
methods that interacted with the Team,
League, and Player entity beans. The
largest chunk of the porting exercise
was simplifying the business methods
to use the EntityManager API, creating
NamedQueries for ejbSelect methods,
setting up the parameters for standalone
named queries that were defined in PO-
JOs, and making sure the methods didn’t
interact with DTOs that had already
been removed (see Listing 4). (Listings
4–5 can be downloaded from www.jdj.
sys-con.com.)

Migrating the Client
 Once the Session façade task was
completed, it was time to clean up
the client code. The main difference
between the EJB 2.1 and EJB 3.0 client is
the lookup code, and minor changes to
make sure the objects returned by the
business methods were POJOs instead
of DTOs (see Listing 5).

Comparing EJB 2.1 to EJB 3.0
 Once the migration was done, I
compared the lines of code and the
number of Java and XML files in
both versions. The biggest difference
between the existing EJB 2.1 and new
EJB 3.0 application was the number
of descriptors. The EJB 2.1 application
had a number of deployment descrip-
tors, while the newer application had
eliminated all of them except for appli-
cation-client.xml and application.xml
(see Table 1).
 I used the numlines (www.gamma-
dyne.com/cmdline.htm) utility, which
gives the line count for uncommented
and non-blank lines – the only types
of lines added for the old and new ap-
plications. In the EJB 2.1 application,
XML files were counted based on the
deployment steps recommended in the
J2EE 1.4 tutorial (see Table 2).

Conclusion
 EJB 3.0 definitely makes it easier to
develop entity and session beans, thanks
to its simplified model and its leverage
of well-known artifacts like POJOs and
interfaces. The new EntityManager API is
a plus; I was able to change the business
methods quite easily without reading the
specification.
 There are other neat features in EJB
3.0, such as the ability to use database
sequences; I used this for one of the
POJOs, but backed out the changes to
make the existing and new applications
more similar. There doesn’t seem to be
support for native SQL queries, though
the specification claims there is. I would
have loved to use those queries instead of
EJBQL, as database portability wasn’t an
issue for this exercise.
 While the specification is a step in
the right direction, I’d like to see more
tool/IDE support for EJB 3.0 so that more
Java application developers can get up to
speed on it. While any standard IDE with
decent support for Java SE 5.0 will be a
good start, I’d like to see better tooling
to support complex mappings (such as
many-to-many), and to facilitate inline
or immediate feedback on the validity
of NamedQueries instead of waiting for
deployment.
 Maintaining applications can’t be
ignored, as applications will live for few
years after the development cycle. All the
features that make application develop-
ment easier will also provide returns in
the application maintenance cycle.
 I recommend that developers take a
fresh and unbiased look at the EJB 3.0
specification by checking out its features
and giving the publicly available EJB 3.0
containers a spin.
 (Oracle Application Server EJB 3.0
Preview was used for this exercise.)

References
• Software used for EJB 2.1 application (as

recommended in the J2EE 1.4 tutorial):
http://java.sun.com/j2ee/1.4/docs/
tutorial/doc/About.html#wp80138

• Software used for EJB 3.0 application
(Oracle Application Server EJB 3.0
Preview): www.oracle.com/technology/
tech/java/ejb30.html

• Source files for the migrated application:
www.jroller.com/resources/raghuko-
dali/howtoRosterApp.zip

• EJB 3.0 specification: http://java.sun.
com/products/ejb/docs.html

Specifications

 EJB 2.1 EJB 3.0
Number of Java Files 17 7
Number of XML Files 9 2

 Table 1

 EJB 2.1 EJB 3.0
Lines of Code 987 in 17 Java files 716 in 7 Java files
Lines of Code 792 in 9 XML files 26 in 2 XML files

 Table 2

49August 2005JDJ.SYS-CON.com

Listing 1

//Team POJO

@ManyToMany(cascade=PERSIST,fetch=EAGER)

@AssociationTable(table=@Table(name=”TEAM_PLAYER”),

joinColumns=@JoinColumn(name=”TEAM_ID”, referencedColumnName=”ID”),

inverseJoinColumns=@JoinColumn(name=”PLAYER_ID”, referencedColumnNam

e=”ID”))

public List<Player> getPlayers() {

return players;

}

// Player POJO

// players is a List in the Team POJO

@ManyToMany(mappedBy=”players”, fetch=EAGER)

public List<Team> getTeams() {

return teams;

}

Listing 2

// NamedQueries in Player POJO

@NamedQueries

({

@NamedQuery(name=”findAll”,queryString=”SELECT OBJECT(p) FROM Player

p”),

@NamedQuery(name=”findByCity”,queryString=”SELECT DISTINCT OBJECT(p)

FROM Player p, in (p.teams) as t where t.city = :city”),

@NamedQuery(name=”findByHigherSalary”,queryString=”SELECT DISTINCT

OBJECT(p1)FROM Player p1, Player p2 WHERE p1.salary > p2.salary AND

p2.name = :name “),

@NamedQuery(name=”findByLeague”, queryString=” select distinct

object(p) from Player p, in (p.teams) as t where t.league = :

league”),

@NamedQuery(name=”findByPosition”, queryString=” select distinct

object(p) from Player p where p.position = :position”),

@NamedQuery(name=”findByPositionAndName”,queryString=” select distinct

object(p) from Player p where p.position = :position and p.name = :

name”),

@NamedQuery(name=”findBySalaryRange”,queryString=”select distinct

object(p) from Player p where p.salary between ?1 and ?2”),

@NamedQuery(name=”findBySport”, queryString=”select distinct object(p)

from Player p, in (p.teams) as t where t.league.sport = ?1”),

@NamedQuery(name=”findByTest”, queryString=” select distinct object(p)

from Player p where p.name = ?1”),

@NamedQuery(name=”findNotOnTeam”,queryString=” select object(p) from

Player p where p.teams is empty”)

})

Listing 3

//code before migrating to EJB 3.0

public List getTeamsOfLeague(String leagueId)

{

Debug.print(“RosterBean getTeamsOfLeague”);

ArrayList detailsList = new ArrayList();

Collection teams = null;

try {

LocalLeague league = leagueHome.findByPrimaryKey(leagueId);

teams = league.getTeams();

} catch (Exception ex) {

throw new EJBException(ex.getMessage());

}

Iterator i = teams.iterator();

while (i.hasNext()) {

LocalTeam team = (LocalTeam) i.next();

TeamDetails details =

new TeamDetails(team.getTeamId(), team.getName(), team.getCity());

detailsList.add(details);

}

return detailsList;

}

//code after migrating to EJB 3.0

 public List getTeamsOfLeague(String leagueId)

{

Debug.print(“RosterBean getTeamsOfLeague”);

League l = (League)getEntityManager().find(“League”, leagueId);

return l.getTeamList();

}

AD

JDJ.SYS-CON.com50 August 2005

Open source and J2SE,
living together in perfect harmony
Side by side on my computer keyboard,
Oh yeah, why can’t we?

ava has been the springboard for
some of the most successful open
source projects today includ-
ing JBoss, NetBeans, and Eclipse.

Several folks though have felt the miss-
ing piece was an actual open source
implementation of the runtime. Some
view Sun’s stewardship of Java and the
JCP as being too controlling, while
others believe it is an essential benign
rule that preserves the integrity of the
language. The view taken by Sun execs
is that the JCP is essential to preserve
portability while preventing forks
in the language (as Microsoft once
attempted with proprietary exten-
sions). Should these occur, they could
compromise a user’s expectation that
a Java program, once written, can run
anywhere. Advocates of open source,
however, deny this would occur and
cite successful projects in which the
benefits of fast innovation and wide-
spread adoption have been fueled by
having an open source community of
developers who drive the implementa-
tion forward.
 Earlier this year the Apache Founda-
tion announced the Harmony project.
Its aims are to write an open source
version of J2SE from scratch. Given
that specifications for J2SE are freely
available, one question might be why
such a move hasn’t occurred before?
In the FAQ for Harmony, Gier Magnus-
son from Apache states: “While the
Java Community Process has allowed
open source implementations of JSRs
for a few years now, Java 5 is the first
of the J2SE specs that we are able to
do due to licensing reasons” (http://
mail-archives.apache.org/mod_mbox/
incubator-general/200505.mbox/
%3CE3603144-2C26-4C31-896D-
6CC7445A63EB@apache.org%3E).
 Rather than reinvent the wheel, after
the initial announcement it seems that
the plan is to try to pollinate the proj-

ect with code and ideas from existing
Java runtimes. At JavaOne Geir said:
“There is a lot of software out there that
we are hoping can be donated. We are
hoping that we will get seeded with
some code from existing production
Virtual Machines.” This is an invitation
to the big guns of software and mom
and pop developers, many of whom
have either privately or openly tin-
kered with creating their own imple-
mentations of Java.
 There are several potential Harmony
contributors who might be in Geir’s
sights to step up to the plate. BEA has
a very good JVM implementation in
JRockit (http://www.bea.com/frame-
work.jsp?CNT=index.htm&FP=/con-
tent/products/jrockit), while Kaffe
(http://www.kaffe.org/) is a clean
room implementation of the JVM.

 Making Harmony succeed, how-
ever, requires more than just a JVM,
as J2SE contains many lines of code in
the actual class libraries, all of which
need API compatible reimplementa-
tion. Due to licensing and IP issues
this most likely must be done in an
environment without reference to the
existing Sun J2SE source code base, so
the hill to climb is steep and high one.
 I usually don’t pay much attention
to the cries of doom issued by execs of
any company that has a vested interest
in whether open source Java should
succeed or fail, but I was surprised
to hear James Gosling, when asked
about Harmony, raise the issue of why
Apache wants the Harmony license

to be different from the existing J2SE
one. He said: “I understand why they
would like it to be different. From our
point of view that would actually be
more destructive than helpful. It boils
down to forking: they believe that the
ability to fork is an absolutely critical
right” (http://www2.vnunet.com/
lite/News/1163182). His voice is one
I respect and should be listened to as
words of wisdom and caution so the
worst case scenario doesn’t become
a reality. To ensure compatibility with
J2SE, however, the harmony FAQ
states that it will be verified against
the J2SE Test Compatibility Kit. The
TCK is published by the JCP and is
the yardstick used by all ratified J2SE
integrations (JCP or commercial) that
to date has ensured no fragmentation
exists and no compromise of integrity
has occurred.
 Whatever the outcome of the
Harmony project, while I do under-
stand the concerns of those who are
frightened of fragmentation in the
language, I am more excited by the
prospects of having an open source
implementation J2SE. This will enjoy
the same benefits that other open
source projects have experienced,
where a community of like-minded,
smart individuals who share the
same goal can participate equally in
the same code and knowledge base
of ideas and innovation. Ideas, bug
reports, and schedules are transparent
and can be iterated in public toward
the best solution. The momentum
of the project becomes fueled by the
feedback loop created by an alliance of
like-minded individuals in a partner-
ship of conviction. To those who don’t
believe this will work, ask not if the
glass is half empty, but listen instead to
the lyrical genius of Sir Paul McCartney
and Stevie Wonder:

We all know that people are the same
where ever you go
There is good and bad in everyone
Learn to live, we learn to give each other
What we need to survive, together alive

Desktop Java Viewpoint

Joe Winchester
Desktop Java Editor

J2SE and Open Source –
Living Together in Perfect Harmony

Joe Winchester is a

software developer

working on WebSphere

development tools for

IBM in Hursley, UK.

joewinchester@sys-con.com

J

� MX Developer’s Journal
U.S. - Two Years (24) Cover: $143 You Pay: $49.99 / Save: $93 + FREE $198 CD
U.S. - One Year (12) Cover: $72 You Pay: $39.99 / Save: $32
Can/Mex - Two Years (24) $168 You Pay: $79.99 / Save: $88 + FREE $198 CD
Can/Mex - One Year (12) $84 You Pay: $49.99 / Save: $34
Int’l - Two Years (24) $216 You Pay: $89.99 / Save: $126 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $59.99 / Save: $48

SUBSCRIBE TODAY
TO MULTIPLE MAGAZINES

3-Pack
Pick any 3 of our
magazines and save
up to $21000

Pay only $99 for a
1 year subscription
plus a FREE CD
• 2 Year – $179.00
• Canada/Mexico – $189.00
• International – $199.00

6-Pack
Pick any 6 of our
magazines and save
up to $34000

Pay only $199 for a
1 year subscription
plus 2 FREE CDs
• 2 Year – $379.00
• Canada/Mexico – $399.00
• International – $449.00

9-Pack
Pick 9 of our
magazines and save
up to $27000

Pay only $399 for a
1 year subscription
plus 3 FREE CDs
• 2 Year – $699.00
• Canada/Mexico – $749.00
• International – $849.00

RECEIVE
YOUR DIGITAL

EDITION
ACCESS CODE
INSTANTLY

WITH YOUR PAID
SUBSCRIPTIONS

*WHILE SUPPILES LAST. OFFER SUBJECT TO CHANGE WITHOUT NOTICE

A LIMITED TIME SAVINGS OFFER FROM SYS-CON MEDIA

SUBSCRIBE TODAY
TO MULTIPLE MAGAZINES

Subscribe Online Today www.sys-con.com/2001/sub.cfm

AND SAVE UP TO $340 AND
RECEIVE UP TO 3 FREE CDs!*

� Web Services Journal
U.S.- Two Years (24) Cover: $168 You Pay: $99.99 / Save: $68 + FREE $198 CD
U.S. - One Year (12) Cover: $84 You Pay: $69.99 / Save: $14
Can/Mex - Two Years (24) $192 You Pay: $129 / Save: $63 + FREE $198 CD
Can/Mex - One Year (12) $96 You Pay: $89.99 / Save: $6
Int’l - Two Years (24) $216 You Pay: $170 / Save: $46 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

� JDJ
U.S. - Two Years (24) Cover: $144 You Pay: $99.99 / Save: $45 + FREE $198 CD
U.S. - One Year (12) Cover: $72 You Pay: $69.99 / Save: $12
Can/Mex - Two Years (24) $168 You Pay: $119.99 / Save: $48 + FREE $198 CD
Can/Mex - One Year (12) $120 You Pay: $89.99 / Save: $40
Int’l - Two Years (24) $216 You Pay: $176 / Save: $40 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

� LinuxWorld Magazine
U.S. - Two Years (24) Cover: $143 You Pay: $79.99 / Save: $63 + FREE $198 CD
U.S. - One Year (12) Cover: $72 You Pay: $39.99 / Save: $32
Can/Mex - Two Years (24) $168 You Pay: $119.99 / Save: $48 + FREE $198 CD
Can/Mex - One Year (12) $84 You Pay: $79.99 / Save: $4
Int’l - Two Years (24) $216 You Pay: $176 / Save: $40 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

� .NET Developer’s Journal
U.S. - Two Years (24) Cover: $168 You Pay: $99.99 / Save: $68 + FREE $198 CD
U.S. - One Year (12) Cover: $84 You Pay: $69.99 / Save: $14
Can/Mex - Two Years (24) $192 You Pay: $129 / Save: $63 + FREE $198 CD
Can/Mex - One Year (12) $96 You Pay: $89.99 / Save: $6
Int’l - Two Years (24) $216 You Pay: $170 / Save: $46 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

� ColdFusion Developer’s Journal
U.S. - Two Years (24) Cover: $216 You Pay: $129 / Save: $87 + FREE $198 CD
U.S. - One Year (12) Cover: $108 You Pay: $89.99 / Save: $18
Can/Mex - Two Years (24) $240 You Pay: $159.99 / Save: $80 + FREE $198 CD
Can/Mex - One Year (12) $120 You Pay: $99.99 / Save: $20
Int’l - Two Years (24) $264 You Pay: $189 / Save: $75 + FREE $198 CD
Int’l - One Year (12) $132 You Pay: $129.99 / Save: $2

� PowerBuilder Developer’s Journal
U.S. - Two Years (24) Cover: $360 You Pay: $169.99 / Save: $190 + FREE $198 CD
U.S. - One Year (12) Cover: $180 You Pay: $149 / Save: $31
Can/Mex - Two Years (24) $360 You Pay: $179.99 / Save: $180 + FREE $198 CD
Can/Mex - One Year (12) $180 You Pay: $169 / Save: $11
Int’l - Two Years (24) $360 You Pay: $189.99 / Save: $170 + FREE $198 CD
Int’l - One Year (12) $180 You Pay: $179 / Save: $1

� WebSphere Journal
U.S. - Two Years (24) Cover: $216 You Pay: $129.00 / Save: $87 + FREE $198 CD
U.S. - One Year (12) Cover: $108 You Pay: $89.99 / Save: $18
Can/Mex - Two Years (24) $240 You Pay: $159.99 / Save: $80 + FREE $198 CD
Can/Mex - One Year (12) $120 You Pay: $99.99 / Save: $20
Int’l - Two Years (24) $264 You Pay: $189.00 / Save: $75
Int’l - One Year (12) $132 You Pay: $129.99 / Save: $2

� 3-Pack � 1YR � 2YR � U.S. � Can/Mex � Intl.

� 6-Pack � 1YR � 2YR � U.S. � Can/Mex � Intl.

� 9-Pack � 1YR � 2YR � U.S. � Can/Mex � Intl.

Pick a 3-Pack, a 6-Pack or a 9-Pack

•Choose the Multi-Pack you want to order by checking
next to it below. •Check the number of years you want to
order. •Indicate your location by checking either U.S.,
Canada/Mexico or International. •Then choose which
magazines you want to include with your Multi-Pack order.

TO
ORDER

CALL TODAY! 888-303-5282

� Information Storage + Security Journal
U.S. - Two Years (24) Cover: $143 You Pay: $49.99 / Save: $93 + FREE $198 CD
U.S. - One Year (12) Cover: $72 You Pay: $39.99 / Save: $39
Can/Mex - Two Years (24) $168 You Pay: $79.99 / Save: $88 + FREE $198 CD
Can/Mex - One Year (12) $84 You Pay: $49.99 / Save: $34
Int’l - Two Years (24) $216 You Pay: $89.99 / Save: $126 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $59.99 / Save: $48

� WLDJ
U.S. - Four Years (24) Cover: $240 You Pay: $99.99 / Save: $140 + FREE $198 CD
U.S. - Two Year (12) Cover: $120 You Pay: $49.99 / Save: $70
Can/Mex - Four Years (24) $240 You Pay: $99.99 / Save: $140 + FREE $198 CD
Can/Mex - Two Year (12) $120 You Pay: $69.99 / Save: $50
Int’l - Four Years (24) $240 You Pay: $120 / Save: $120 + FREE $198 CD
Int’l - Two Year (12) $120 You Pay: $79.99 / Save: $40

� Wireless Business & Technology
U.S. - Two Years (12) Cover: $120 You Pay: $49.00 / Save: $71 + FREE $198 CD
U.S. - One Year (6) Cover: $60 You Pay: $29.99 / Save: $30
Can/Mex - Two Years (12) $120 You Pay: $69.99 / Save: $51 + FREE $198 CD
Can/Mex - One Year (6) $60 You Pay: $49.99 / Save: $10
Int’l - Two Years (12) $120 You Pay: $99.99 / Save: $20 + FREE $198 CD
Int’l - One Year (6) $72 You Pay: $69.99 / Save: $2

���������������������������������
���������������������������

24/7

Visit the ���
���������������

Website Today!

��

��������������������
����������������������
������������������

������������������������������������

���

��������������������

������������������������

�������������������

�������������������

���������������������������

����������������������

������������������������������

�����������

������������������������������

���������������������������

�����������������

����

��������������������������������

����������������
��
���

����������
���

�������������
��

��������
��

����������
��

��������
���
�
����������
��

��������������������
���

���������������������������������
���������������������������

24/7

JDJ.SYS-CON.com52 August 2005

his article presents a Java/
Swing component imple-
mentation of a feature that
is ubiquitous in nearly all

desktop applications, particularly
Windows applications – an area
in the lower right portion of a win-
dow (Frame) that can be used
to resize the window.
 Of course, a window can be re-
sized with most desktop managers
by dragging the lower-right edge
– the additional component simply
serves as a visual indicator of the
resize capability, and also increases
the margin of error for the mouse
drag.
 Typically this component is
placed in a status or message area
at the bottom of a window. I demon-
strate my solution in the context
of a very simple (and barely func-
tional) Web browser. I also introduce
a technique in which a Frame/
JFrame/JInternalFrame can exhibit
“continuous layout” behavior as it
is resized.

Details
 The component is called Frame-
Resizer. It subclasses JComponent
and has two main jobs that it per-
forms. First, it draws itself and, sec-
ond, it handles mouse events so that
it can both change the mouse cursor
(on mouse enter/leave) and resize
the window (on mouse press/drag/
release). FrameResizer can be used
 to resize a Frame, JFrame, or JInter-
nalFrame, each of which has a com-
mon ancestor of java.awt.Container
in the component class hierarchy.
So constructors for FrameResizer
take a Container argument as
follows:

public FrameResizer(Container parent);

public FrameResizer(Container parent, bool-

ean useContinuousLayout);

Rendering
 Figure 1 shows the FrameResizer in
its typical context, at the lower right
edge of a window, as part of a status/
message area.
 FrameResizer draws itself in the
paintComponent() method as shown
in Listing 1. There are seven “ribs”
that make up the component.
 A rib is one of the raised “bumps”
in the component visual; it’s actually
just two 2x2 pixel rectangles drawn
in different colors offset slightly from
each other. You can see this in the
exploded view of the FrameResizer in
Figure 2.

Resizing
 Much of the interesting FrameR-
esizer code is in the MouseInputLis-
tener inner class that the component
adds to itself. In the mouseEntered()

and mouseExited() methods, the
cursor is changed to Cursor.NW_RE-
SIZE_CURSOR and the default
Cursor, respectively. In the mouse-
Pressed() method (see Listing 2), the
mouse location is converted to actual
screen coordinates, and the relative
location from edge of the window
(the Point mouseAdjust) is calcu-
lated.
 In the mouseDragged() method
(see Listing 3), the current mouse po-
sition is again converted to absolute
screen position, and the new bounds
of the parent Container (Frame/In-
ternalFrame) are recalculated based
on the original mouse location.
 The mouseReleased() method
calls mouseDragged() for a final
calculation, and then “validates” the
parent container. Since FrameResizer
supports either an external Frame

Techniques

by Phil Herold
FrameResizer

T

Phil Herold is a Java architect

with over 24 years experience in

software engineering. He

has been working with Java

client technologies since 1996.

Phil.Herold@sas.com

Resizing windows

 Figure 1 FrameResizer

53August 2005JDJ.SYS-CON.com

or a JInternalFrame, the validate()
method does the appropriate
validation and invokes the repaint()
method (see Listing 4). This needs
to be done at the end of the AWT
EventDispatchThread (thus the use
of SwingUtilities.invokeLater()). This
method is declared static so it can be
re-used for the “continuous layout”
functionality (see below).

Continuous Layout
 This concept is familiar to Swing developers who use
JSplitPane – it’s the ability to have internal components
validate and repaint as the container is resized (in real
time). Unfortunately, when a top-level Java desktop win-
dow is resized, this doesn’t happen, as the validate/re-
paint messages are not sent to the underlying Container
until resizing (via mouse dragging) is complete. Figure
3 is a capture of our browser window during the mouse
drag. You can see how the contents of the window are
not “stretched’ to fit the bounds of the Frame – this is
done when the mouse is released.
 Ideally you want the contents of the window to stretch
to the frame bounds during resizing. This capability is
evident in most non-Java top-level desktop windows.
 The trick to doing this in Java is to use a Timer to
periodically check the current bounds of the window
(Frame), and if it has changed since the last interval,
send the validate/repaint messages to the Frame. You
can see how this is done in Listing 5. I coded it as a static
method in FrameResizer so this functionality can be
used independently of the component.
 The code uses a static HashMap (continuousLayou-
tWindows) so it can be used for multiple windows in a
multi-frame application. It lazily initializes this Hash-
Map. In the map it stores the current Container bounds
keyed by the Container. If the current bounds are dif-
ferent than what is in the map, the current bounds are
saved and the validate and repaint messages are sent to
the Container (our static validate() method from before).
That’s all there is to it. I use 100 milliseconds (hard-cod-
ed) as my timer interval – feel free to experiment with
this number (or parameterize it).
 You can specify whether or not “continuous layout” is
used by the FrameResizer in its constructor (the default
is true). Note that one drawback to “continuous layout”
in this context is the flicker that occurs during the re-
paint. This is unfortunately unavoidable. Also note that
the continuous layout behavior is not required if you
are using the FrameResizer in the context of a JInternal-
Frame.

Summary
 In this article I presented a custom Swing component
that can be used to help provide a customary look and
feel to a Frame or JInternalFrame. I’ve also introduced
the concept of “continuous layout” to top-level Java
desktop windows and shown how this can be imple-
mented. The source code for this article can be down-
loaded from http://jdj.sys-con.com.

 Figure 2 Exploded View

 Figure 3 Browser window

JDJ.SYS-CON.com54 August 2005

Techniques

Listing 1

public void paintComponent(Graphics g) {

 super.paintComponent(g);

 Dimension size = getSize();

 Insets insets = getInsets();

 int x = size.width - insets.left - insets.right - 2;

 int y = size.height - insets.top - insets.bottom - 2;

 for (int i = 0; i <= 2; i++) { // paint ribs, lower

 right up

 paintRib(g, x, y - (i * 4));

 }

 for (int i = 0; i <= 2; i++) { // paint ribs, lower

 right left

 if (i != 0) {

 paintRib(g, x - (i * 4), y);

 }

 }

 paintRib(g, x - 4, y - 4); // paint last rib, lower

right back

}

Listing 2

public void mousePressed(MouseEvent e) {

 Point pt = new Point(e.getPoint());

 SwingUtilities.convertPointToScreen(pt, FrameResizer.this);

 Rectangle frameBounds = parentContainer.getBounds();

 mouseAdjust.x = frameBounds.x + frameBounds.width -

 pt.x - 1;

 mouseAdjust.y = frameBounds.y + frameBounds.height

- pt.y - 1;

}

Listing 3

public void mouseDragged(MouseEvent e) {

 mouseLocation.x = e.getX();

 mouseLocation.y = e.getY();

 SwingUtilities.convertPointToScreen(mouseLocation,

 FrameResizer.this);

 Rectangle frameBounds = parentContainer.getBounds();

 parentContainer.setBounds(frameBounds.x, frameBounds.y,

mouseLocation.x - frameBounds.x + mouseAdjust.x,

 mouseLocation.y - frameBounds.y + mouseAdjust.y);

}

Listing 4

private static void validate(final Container container) {

 SwingUtilities.invokeLater(new Runnable() {

 public void run() {

 if (container instanceof Frame) {

 ((Frame)container).invalidate();

 ((Frame)container).validate();

 } else if (container instanceof JInternalFrame) {

 ((JInternalFrame)container).

 revalidate();

 ((JInternalFrame)container).repaint();

 }

 container.repaint();

 }

 });

}

Listing 5

public static void setContinuousLayout(final Container

container) {

 new Timer(100, new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 Dimension currentSize = container.getSize();

 if (continuousLayoutWindows == null) {

 continuousLayoutWindows = new HashMap();

 }

 Dimension windowSize =

(Dimension)continuousLayoutWindows.get(container);

 if (windowSize == null) {

 windowSize = new Dimension();

 continuousLayoutWindows.put(container,

 windowSize);

 }

 if (!currentSize.equals(windowSize)) {

 windowSize.width = currentSize.width;

 windowSize.height = currentSize.height;

 validate(container);

 }

 }

 }).start();

}

JDJ.SYS-CON.com56 August 2005

xperienced developers know
many of the benefits of and moti-
vations for using interface-based
design principles. Interfaces pro-

vide for polymorphic behavior by hiding
the implementation and only expos-
ing the relevant public methods of the
implementing class. What may be less
appreciated is that the use of interfaces,
when applied to an entire application,
can provide for application isolation,
while at the same time enhancing testing
capabilities.
 In this article we’ll explore the use of
interfaces at all application boundar-
ies and gain an appreciation for why
we should consider, and possibly even
mandate, interface-based design prin-
ciples at all application boundaries. This
mandate should apply even if applica-
tion requirements or application design
do not call for differing behavior behind
the interface.

What Is an Application Boundary?
 Before we start mandating anything
throughout our entire application, it
would be helpful to have a better feel for
exactly what an application boundary is.
Consider any application you write. The
application is composed of the classes
that you write and the code or resources
with which your application interacts.
Unless you’re writing an “Hello World”
application, you will need to access
many or all of the following resources:
• File system, library, server,

database…

 Although the above list is only a small
subset of the many external resources
that should be considered application
boundary resources, it does convey the
essence of the idea. Figure 1 provides
a pictorial view of these application
boundary resources.

Motivations for Interfaces
 While many motivations drive the use
of interfaces, it is instructive to describe
the core motivations. As one example,
consider JDBC, which makes heavy use

of interface-based design principles.
A ResultSet is an interface; moreover,
all JDBC driver vendors must provide
an implementation for the ResultSet
interface. Application developers simply
use the ResultSet, in most instances not
knowing or caring how the underlying
code is implemented. Application de-
velopers code to the ResultSet interface
while the actual implementation is
usually defined and configured apart
from the application code. JDBC is based
heavily on interfaces to support the abil-
ity to change the driver implementation
without impacting the application code.
Simply put, portability is the driving fac-
tor for JDBC interfaces.
 Resource wrapping can be listed as a
second motivation for the use of interfac-
es. The main intent is to support the abil-
ity to change the wrapped resource with
little to no application code changes. In
this sense, the motivations for resource
wrapping are very similar to the JDBC ex-
ample except that most resources are not
based on a set of predefined interfaces as
JDBC is. By contrast, different resources

that deliver the same or similar function-
ality are not likely to have the same API.
As a result, the interface for a changed
resource is likely to become more of a
façade-based implementation, especially
if a resource change is realized.
 Other application interfaces are
typically chosen for the polymorphic
benefits realized by an interface-based
design. The application behavior is man-
dated by either specific requirements
or by design recognizing the similarities
between two or more subsystems or
elements. On the application side, inter-
face-based solutions are nearly always
chosen based on required or desired ap-
plication behavior with polymorphism
being the driving motivation.
 Lastly, application isolation should be
added as another motivation for the use
of interfaces. The intent of application
isolation is not necessarily to support the
future change of a tool or resource, but
rather to support the ability to remove
the resource dependency from an appli-
cation. Isolation is often needed during
unit testing, but is also beneficial in the

Design

by Pete Whitney
Interface All Boundaries

E

Pete Whitney is a principle

engineer at Nexa Technologies

Inc. in Allen, TX. Pete received

his BS in computer science from

the University of Texas at Dallas.

His industry interests are in

genetic algorithms for business,

generic programming, and

application architecture.

pnwhitney@sbcglobal.net

Providing tangible benefits to your application

 Figure 1

57August 2005JDJ.SYS-CON.com

early stages of development when the resource in question may
not yet be available. Using interfaces at all application bound-
aries delivers the ability to easily plug in alternative implemen-
tations that are not resource dependant. This capability can
deliver extensive benefits to a development team by eliminat-
ing the constraints imposed by some resource dependencies.
 For brevity, the motivations for interface-based design are:
• Portability
• Resource wrapping
• Polymorphism
• Application isolation

Project Example, Iteration 1
 Application isolation is the motivation we’ll spend the re-
mainder of this article on. With that thought in mind, let’s turn
to the impact of external resources on our application code
base. For better understanding we’ll use the retrieval of a collec-
tion of person objects from a database as our core example. In
iteration 1 we’ll provide an unimproved implementation. This
iteration shows a small cut of the code as it might exist without
the use of interface-based design principles. Using good design
principles we’ll encapsulate our database access by using a
PersonDAO class (Data Access Object pattern) for all database
access. Figure 2 shows the UML for our simplified application.
 The PersonDAO class will acquire a database connection
and issue queries on behalf of the invoking party, which in this
instance is the BusinessFacade class (Façade Pattern). The code
below shows a brief implementation of the BusinessFacade
class. Note the direct instantiation and use of the PersonDAO
class, which immediately ties the BusinessFacade class to the
database resources referenced in the PersonDAO class.

1 public class BusinessFacade

2 {

3 public void

4 reportTodaysBirthdays()

5 {

6 Date today = new Date();

7 PersonDAO personDao =

8 new PersonDAO();

9 Collection persons =

10 personDao.getByBirthDate(today);

11 // Do what needs to be done

12 // to report on those that

13 // have birthdays today.

14 }

15 }

 Being tied to the database imposes all of the following
resource requirements:
• Existing network connectivity
• Database server capable of handling the connection request
• Database schema supporting the Person table
• Database data from which the query can be fulfilled

 It’s certainly true that we will be required to be tied to
some database at some time during the development phase.
However, imposing such a hard dependency for all develop-
ment unnecessarily hinders other developers working outside
the realm of the database. Moreover, the hard dependency can
be rather easily avoided with a little forethought and a simple
interface!

Project Example, Iteration 2
 In iteration 2 we seek to avoid the database dependency
imposed by our thoughtless implementation in iteration 1.
Adding an interface and a few support classes is all that’s
needed to remove our database dependency. Figure 3 shows
the UML for our example application with the requisite
changes.
 Note the specification of the IPersonDAO interface. Imple-
menting this interface are two classes namely “PersonDAO”
and “TestPersonDAO”. The PersonDAO class may remain as it
was before except for designating that the class now imple-
ments the IPersonDAO interface. The TestPersonDAO class

 Figure 2

JDJ.SYS-CON.com58 August 2005

is created to return a statically defined
set of Person instances in a collection.
By doing so, the TestPersonDAO class
will have no actual dependency on the
database, but can function in place of
the database-constrained PersonDAO
class. The following provides the code
implementation of the TestPersonDAO
class:

1 public class TestPersonDAO

2 implements IPersonDAO

3 {

4 public Collection

5 getByBirthDate(Date bDate)

6 {

7 ArrayList results =

8 new ArrayList();

9 Person person = new Person();

10 // set person attributes here

11 results.add(person);

12

13 // Construct more persons as

14 // needed and add these to

15 // the returned results

16 return results;

17 }

18 }

 The database dependency is removed
from the BusinessFacade class when
providing it with a TestPersonDAO
instance rather than a PersonDAO in-
stance. This functionality is provided for
via delegation to the DAOFactory class:

1 public class BusinessFacade

2 {

3 public void

4 reportTodaysBirthdays()

5 {

6 Date today = new Date();

7 IPersonDAO personDao =

8 DAOFactory.createPersonDAO();

9 Collection persons =

10 personDao.getByBirthDate(today);

11 // Do whatever needs to be done

12 // to report on those that have

13 // birthdays today.

14 }

15 }

 Many possibilities exist for the imple-
mentation of the DAOFactory class.
The different class instantiations could
be defined by properties, the creation
method could be passed a parameter, or
the implementation could be based on
the AbstractFactory pattern. Regard-
less of the chosen implementation, the
important elements are as follows:
• The BusinessFacade implementation

invokes upon an interface instance
rather than a concrete instance that it
creates.

• The BusinessFacade implementa-
tion delegates the construction of the
IPersonDAO instance to some other
entity (DAOFactory).

 By applying these changes, the Busi-
nessFacade class will only be database
coupled during those times that the
DAOFactory returns a PersonDAO
instance rather than a TestPersonDAO
instance. Defining the actual construc-
tion and return type via configuration
rather than code will allow the database
dependency to be removed via the same
configuration.

Other Tools
 One tool that exists for the purpose
of removing application dependencies
is mock objects. The mock objects API
allows a developer to easily instantiate
objects based on any interface, and to
easily provide a default implementation
for these mocked up objects. The mock
object framework shines in the area
of unit testing by allowing dependant
resources to be “mocked” in a program-
matic way. As such a developer can
create defined software instances for
required resources and allow tests to be
driven from the mocked instances. This
greatly supports the isolated “sand-box”
environment that is so desirable for well-
written unit tests.
 It should be noted that the interface-
based design principles proposed in

this article will lay the groundwork for
your application to easily incorporate
and leverage the use of the mock objects
framework. Whether you provide your
own implementations or leverage the
mock objects framework, you will have
allowed your application to be config-
ured apart from the resources that it
would otherwise depend upon.

Conclusion
 We’ve had the opportunity to explore
the problems that arise when direct re-
source dependencies are imposed upon
our application development team. The
benefits of avoiding these dependen-
cies offer compelling reasons to avoid
or defer such dependencies. We’ve also
experienced the relative ease in which
these dependencies can be avoided.
 In much of my development life, I’ve
defined resource interfaces initially,
provided non-dependant implementa-
tions for these interfaces, and went well
along the early iteration phase or phases
without ever needing to invoke upon
the implementation that introduces the
actual resource. As a result, my early
phase development goes faster because
I’m not hindered by the absence of a
dependant resource. Only later in the
development phase do I introduce the
implementation that adds the resource
dependency.
 Requiring that all external resources
be based on an interface adds little
effort to the development timeline.
Yet it provides tangible benefits to the
application under development and
to the application development team.
Therefore, consider adding application
isolation to your list of motivations when
considering the use of interfaces in your
application development efforts and use
interfaces at all application boundaries.
 As a final note, it is instructive to
recognize that the techniques described
in this article transcend the implemen-
tation language. Although the code
examples were presented in Java, the
benefits of application boundary inter-
faces can be realized in any implemen-
tation language.

References
• Alur, D. et al. (2001). Core J2EE

Patterns. Prentice Hall.
• Gamma, E., et al. (1995). Design

Patterns. Addison-Wesley.
• Mock Objects: www.mockobjects.com

Design

 Figure 3

JDJ.SYS-CON.com

Advertiser Index

General Conditions: The Publisher reserves the right to refuse any advertising not meeting the standards that are
set to protect the high editorial quality of Java Developer’s Journal. All advertising is subject to approval by the
Publisher. The Publisher assumes no liability for any costs or damages incurred if for any reason the Publisher
fails to publish an advertisement. In no event shall the Publisher be liable for any costs or damages in excess
of the cost of the advertisement as a result of a mistake in the advertisement or for any other reason. The
Advertiser is fully responsible for all financial liability and terms of the contract executed by the agents or agen-
cies who are acting on behalf of the Advertiser. Conditions set in this document (except the rates) are subject
to change by the Publisher without notice. No conditions other than those set forth in this “General Conditions
Document” shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the
content of their advertisements printed in Java Developer’s Journal. Advertisements are to be printed at the
discretion of the Publisher. This discretion includes the positioning of the advertisement, except for “preferred
positions” described in the rate table. Cancellations and changes to advertisements must be made in writing
before the closing date. “Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.

 Advertiser URL Phone Page

This index is provided as an additional service to our readers. The publisher does not assume any liability for errors or omissions.

 Altova www.altova.com 978-816-1600 4

 ceTe Software www.dynamicpdf.com 800-631-5006 45

 Common Controls www.common-controls.com +49 (0) 6151/13 6 31-0 49

 Google www.google.com/jdj 650-253-0000 41

 InetSoft www.inetsoft.com/jdj 888-216-2353 23

Information Storage & Security Journal www.issjournal.com 888-303-5282 59

 InterSystems www.intersystems.com/cache14p 617-621-0600 Cover IV

 IT Solutions Guide www.sys-con.com/it 888-303-5282 55

 JadeLiquid Software www.webrenderer.com +61 3 6226 6274 25

 Java Developer’s Journal www.jdj.sys-con.com 888-303-5282 47

 Jinfonet Software www.jinfonet.com/jp6 301-838-5560 31

 LinuxWorld Conference & Expo www.linuxworldexpo.com 800-657-1474 33

 M7 www.m7.com/power 866-770-9770 19

 Microsoft microsoft.com/connectedsystems Cover II

 NCL www.nclt.com/jdj +353 1 6761144 39

 Northwoods Software Corp. www.nwoods.com/go 800-434-9820 53

 Parasoft Corporation www.parasoft.com/jdjmagazine 888-305-0041 7

 Parasoft Corporation www.parasoft.com/soa_wsj 888-305-0041 29

 Perforce Software www.perforce.com 510-864-7400 11

 ReportingEngines www.reportingengines.com 888-884-8665 15

 Smart Data Processing, Inc. www.weekendwithexperts.com 732-598-4027 57

 Software FX www.softwarefx.com 800-392-4278 Cover III

 STP Conference www.stpcon.com 415-785-3419 37

 Synaptris www.intelliview.com/jdj 866-99IVIEW 17

 SYS-CON Website www.sys-con.com 888-303-5282 51

JDJ.SYS-CON.com60 August 2005

Software Design

agic, like software, depends
on understanding the audi-
ence. Why not use a few
techniques from magic to

understand users?

A Golden Hammer Appears
 First, let’s explore the magic of
making objects appear out of thin air.
I’m thinking big, so let’s make a house
appear. Is the magician building the
house? No, just revealing it. Do you
care how the house got there? No, it’s
just cool to have the house. Software
should be just as magical. What’s more
magical, a feature-rich virus scanner
with lots of options to set with the
capacity to eliminate 98% of spam, or a
simple scanner that eliminates 97% of
spam? Read on.
 How does magic and mind reading
enter into this? Before I pull a rabbit
out of my hat, we need to be able to
spot a lack of magic. I use the Golden
Hammer anti pattern from my favorite
software book called Anti Patterns -
Refactoring Software, Architectures, and
Projects in Crisis by William J. Brown,
et al. The Golden Hammer anti pattern
applies to any application that is meant
to be a tool or set of tools rather than
a carefully constructed solution for a
specific problem.
 The Golden Hammer anti pattern is
easily recognized. We just look for a few
key words and phrases like framework,
scripting, kernel, engine, customer-
driven, or user-scripted. Related warn-
ing signs are multi-day training pro-
grams, 24-hour premium support, or
the presence of thick manuals. Things
you don’t hear are instant-on, works
out of the box, or solution driven.
 A Golden Hammer application is so
flexible it can never fail. That is a se-
ductive thought. We create the perfect
software by “not” solving a problem.
Give the user the tools and let him
build his own house to live in. What
could be simpler?

 The problem is that tools are not
solutions. It’s the difference between
a house and a bunch of tools and
wood. It’s also the difference between
an application that solves a problem
now and one that might take a week of
training plus trial and error.
 But this article is about magic.
Magic’s first principal is to hide the
trick, but the key is to control the audi-
ence so they see the illusion. Magicians
create, control, and present illusions
in the same way application designers
create well-designed applications. The
less you expose control of an applica-
tion and match the user’s process, the
more predictable, testable, and easily
used your applications will become.

Is This Your Card?
 Let’s talk about the core of many
card tricks, the card force. The com-
mon scenario is that you are asked to
pick a card, any card, memorize it, and
then place it back into the deck. The
magician then reproduces the card,
perhaps spray painted on the side of
an elephant that appears in a flash of
fire. The magician’s goal is to perform
this trick without you realizing that he
is forcing you to select a card already
on the elephant. There are other varia-

tions, but forcing is tried and true with
thousands of variations.
 How does forcing a card relate to
software? We want the user to appear to
be in control. If a magician just selected
a card, showed it to the audience, put it
back into the deck, shuffled, and repro-
duced the card, we are not impressed.
But if you get to select the card, then
shuffle it into the deck, we have the
illusion of control and thus the produc-
tion of the card is magic.
 How do we select the right card for
the user? Reading the minds of many
of you I see requirements and process.
The core component I want you to
concentrate on is the process and the
solution. What do they do now? What
will save them the most time? What is
required every time they perform the
task? What is the process flow? What is
wrong with the current solution?
 Creating the magic is as simple as
using this information to constrain
the design to just solve the problem in
a constrained way. The forcing of the
card, like limiting the choices a user
can make, are key to the success of the
total application. Flexibility remains,
but it is constrained to a solution and
its highly probable variations.
 Your gauge to success is testability.
But not just if A then B. Your best tests
will be problem/solution or goal-ori-
ented tests. Simply, can the user solve
the problem quickly and easily out of
the box? That’s real magic.

Think of a Number, Any Number
 Mentalism, or mind reading, is a
variation of the magical arts. A mental-
ist either reads your mind or makes
predictions about past and future.
Many mentalist tricks use human
behavior and a few statistics and
observations. The mentalist appears
to read your mind but really they are
using clues about your life, a little
misdirection, and some common rules
of thumb.

 by Daniel Brookshier

Magic Is Golden

M

Daniel Brookshier, JXTA

consultant, is a freelance

consultant, speaker, author, and

Java geek since Java 1.0. He is

one of the core members at jxta.

org and runs several open source

projects including jxta-remote-

desktop at java.net. Daniel’s

latest book is JXTA: Java P2P
Programming, but he also writes

articles for java.sun.com and

P2PJournal where he is an editor.

Daniel’s blog covers the P2P

world, tips, tricks, and musings

on Java and JXTA.

turbogeek@cluck.com

Pulling rabbits out of hats

61August 2005JDJ.SYS-CON.com

 Pick a number; say between 1 and
5…. If you are like 95% of most of my
audiences, you will pick three. The
numbers four, two, one, and five fol-
lows that. Even if you say you picked
another number, 3 was what you first
thought. It’s a cool trick but just shows
how easy it is to use human behavior
to help write software.

I Predict Great Wealth
 At one company, we actually hired a
mentalist to help us write consumer-
profiling software. Our core problem
was avoiding a complex interface to
gather personal information. Dan Ko-
rem (www.ifpinc.com) was hired as a
specialist on profiling (including work
with the FBI). But surprisingly Dan
started out as a stage magician and
mentalist and a core part of his profil-
ing skills that we needed were from
his stage act. His advice to us was to
use the techniques of the mind reader
and specifically an art known as Cold
Reading.
 Cold Reading starts with a few bits
of information to create new assump-
tions about a person and their life.
As an example, the mentalist (or fake
telephone/TV psychics) starts with
a person’s age and the presence of a
wedding ring to guess with high prob-
ability that the person has children.
The mentalist can then make further
assumptions that the parent has
thoughts of angst about their children
doing well in school. A+B implies a
high probability of C, which then as-
sumes D. There is a bit more to this,
but that’s the core of appearing to be-
ing a mind reader and even appearing
to predict the future or looking to your
past.
 Using the techniques of the mental-
ist we created an accurate picture
that was corrected over time based on
observing user behavior. We just used
basic demographics like age, profes-
sion, and a couple other facts to make
a large number of assumptions. We
didn’t need to expose the user to page
after page of questions. The design of

our profile interface became mostly
invisible even though it was far more
powerful.

Is This the File You Lost?
 Mentalist tricks can also get you one
step ahead of the user by using context
to predict actions. You can see signs of
this in applications that collapse “find”
and ‘find and replace” in their menus.
Instead the find dialog anticipates by
integrating “replace” and “find.” Or
“export” is integrated with “save as”
because saving a file with a new name
or location is a similar process to
changing its format.
 If I mention children, you’ll think of
your own. If I say that you are worried
about their safety, I am dead on with
that prediction. There are many such
contexts with common thoughts and
motivations that we all share. We don’t
tell the mind reader and yet they know.
 Let’s apply context to saving backups
of files you are editing. My application
looks like it has psychic powers after
the computer crashes if I show you a
file saved five seconds before the crash.
No need to bother you with the option
for backups. The experience after the
crash is important. Before the crash, I
might want backups, but after a crash
I definitely want them. Giving you the
option of turning on and off backups is
meaningless and should not be a part
of the application.
 What about the interval between
backups and saves? Instead of let-
ting the user guess the interval, why
not watch what the user is doing? If
I am really typing away, I want to do
more saves. If I’m idle, why save at
all? Context drives the solution and
real-time observation is even better.
Perhaps more coding, but the result is
a simpler interface and a much happier
user when the backup file magically
appears.

The Magic of Great Software Design
 With software we can have miracles
all the time. Users don’t want to see
the wires, trapdoors, or mirrors. We

know magic is trickery, but if we can’t
see the wires, we react to the miracle.
Forcing flow, profiling, and using con-
text reduces user complexity and adds
more value.
 Back to the ideas of tools verses so-
lutions. The audience does not want to
build the magician’s props or feed the
pigeons and rabbits. Users are quite
happy with picking the forced card
and being entertained with magic.
 Want to give a user a Golden
Hammer instead of solutions? Hey,
give them an editor and teach them
to write Java code. To me, that’s too
much like a magician revealing his
tricks!
 Users are experts in their domain.
They are not magicians or program-
mers. Respect their time and skills and
don’t waste their time learning your
profession. Instead learn theirs like a
magician studies what will fool and
amaze you.

I Believe in Magic
 Not everyone likes magic. To some
it is abhorrent that anyone would
even be entertained by an illusion. I
can look deep into the minds of these
rebels of pure logic. You who believe
flexibility “is” efficiency. I don’t argue
with your methods or philosophy.
You are 100% correct. Flexibility has
a payoff. But please, most users don’t
want that kind of flexibility. Users will
be more efficient within their domain,
skills, and desires. Most people don’t
want to see what’s behind the curtain
or operate the levers you love. Please
respect that.
 I do believe in magic. Magic is
anything where I get what I need
without a need to know how it is done
or, in fact, the skills to do it myself.
The same is true of my software and
the software I design for my clients.
I’m a programmer and magician and I
have users and an audience. My users
believe in magic. To bring back the
example of the hard to use versus the
easy virus scanner, the easier one to
use has all the magic. Abracadabra!

The less you expose control of an application and match the
user’s process, the more predictable, testable,
and easily used your applications will become”

“

JDJ.SYS-CON.com62 August 2005

he JavaOne Conference was the stage
for many Java premiers and launches.
One of them was the Star Spec Leads
program initiated by the JCP.

 This program is the community’s way
of recognizing and celebrating those Spec
Leads who had an exceptional contribution
to the development of Java Specification
Requests (JSR) and carried out their spec
lead duties flawlessly. Specification leads, in
widely adopted JCP jargon Spec Leads, are
instrumental to the development and final-
ization of Java standards. Without them the
proposed specifications wouldn’t go beyond
the idea stage.
 Star spec leads in the definition of the Star
Spec Leads program produce high-qual-
ity specifications, establish best practices,
and mentor entry spec leads. The program
endorses the good work that they do and
showcases their methods for other spec leads
to emulate.
 It’s no easy thing to become a Star Spec
Lead. You need a proven track record of
successful communication with the expert
group and the PMO. You need to respond
promptly to concerns the expert group, PMO,
or the ECs may have; conduct expert group
meetings effectively and share JSR com-
ments on a regular basis; show leadership
and inspire and motivate the expert group;
demonstrate rigorous discipline by staying
on schedule and delivering JSRs within
expectations and conducting JSR business in
an open, transparent manner.
 The first ones to cut this ambitious profile
were announced by the JCP at the launch
of the program the first day of JavaOne.
Based on results of a poll of Expert Group
(EG) members, Executive Committee (EC)
members, and PMO staff combined, 16 spec
leads won the distinction of Star Spec Lead:
Alejandro Abdelnur of Sun, Volker Bauche
of Siemens, John Buford of Panasonic
and Network Technologies Laboratories,
Ekaterina Chtcherbina of Siemens, Linda
DeMichiel of Sun, Andreas Ebbert of Nokia,
Jan Eichholz of Siemens, Stefan Hepper of
IBM, Mark Hornick of Oracle, Jere Kapyaho
of Nokia, Kimmo Loytana of Nokia, Eamonn
McManus of Sun, David Nuescheler of
Day Software, Eric Overtoom of Motorola,

Vincent Perrot of Sun, and Jim Van Peursem
of Motorola.
 Due to space constraints, I’ll only be able
to introduce a few of them to you this month.
 Volker Bauche is a senior software
technologist and team lead in the Siemens
Mobile software technology department.
He stays on the cutting edge, currently
focusing on predevelopment projects,
evaluations, prototypes, and so forth, which
often incorporate Java technology. He got
involved in the JCP work as early as 1998
when he became part of the Siemens team
working on the Java Platform, Micro Edition
standardization process. His JCP portfolio
includes participation and contributions to
JSR 118 MIDP 2.0; JSR 179 Location API for
Java Platform, Micro Edition (Java ME); JSR
238 Mobile Internationalization API; JSR 256
Mobile Sensor API; and JSR 257 Contactless
Communication API. Volker also served as
co-Spec Lead with Jari Länsiö of Nokia on JSR
195 Information Module Profile (IMP) and
JSR 228 IMP – Next Generation.
 As a lead scientist for Panasonic Digital
Networking Lab, John Buford conducts
research in middleware for Java technol-
ogy-enabled consumer electronics devices.
John has worked with Java technology from
the perspective of a developer, project lead,
vendor, and researcher, covering all three edi-
tions of the Java Platform. He has developed
clients for multimedia/hypermedia servers,
network management systems, and work-
flow/e-commerce systems. He was the first
to use Java Platform, Enterprise Edition (Java
EE) application servers for telecommunica-
tions network management and the first to
implement the Java Virtual Machine Profiler
Interface (JVMPI) for a Mobile Information
Device Profile/Connected Limited Device
Configuration (MIDP/CLDC) platform. John
participated in developing a Java ME VM for
various mobile and embedded platforms,
including a Just-in-Time (JIT) compiler for
the MIDP/CLDC platform. Currently John
serves as a secondary representative to the
EC, Expert Group member of JSR 259 Ad
Hoc Networking API, and co-Spec Lead on
four JSRs: JSR 164 SIMPLE Presence, JSR 165
SIMPLE Instant Messaging, JSR 186 Presence,
and JSR 187 Instant Messaging

 Andreas Ebbert, a software design
engineer at Nokia, is responsible for the
Java Platform, Enterprise Edition (Java EE)
programming for the Nokia NetAct network
and service management system. His par-
ticipation in the JCP program began in 2001
when Andreas joined the OSS through Java
Initiative (OSS/J). He created the Reference
Implementation (RI) and part of the Technol-
ogy Compatibility Kit (TCK) for JSR 89 OSS
Service Activation API. He participated in all
OSS JSRs and in the development of the RI
for JSR 144 OSS Common API. He serves as
an Expert for JSR 263 Fault Management API
and is Spec Lead for JSR 264 OrderManage-
ment API.
 A mathematician by education, Jan
Eichholz of Siemens first participated in the
standardization of the Mobile Information
Device Profile (MIDP) in 1999. Since then,
Jan has participated as an Expert Group
member in several Java Specification Re-
quests (JSRs), all related to enhancing wire-
less technology and also served as Spec Lead
for JSR 120 Wireless Messaging API (WMA)
and JSR 205 WMA 2.0.
 A software architect with IBM, Stefan
Hepper started programming with Java
technology when it was still at version 0.9,
circa 1996. He began participating in the JCP
program at the beginning of 2002 because
customers wanted something done. He
became co-spec lead with Sun’s Alejandro
Abdelnur for JSR 168 Portlet Specification, a
standard enabling interoperability between
portlets and portals. On behalf of IBM Stefan
assumed responsibility for creating the Ref-
erence Implementation (RI) and on behalf
of Sun Alejandro created the Technology
Compatibility Kit (TCK).
 What do all these folks have in common?
They are passionate about Java, and they be-
lieve in the benefits of evolving the platform
based on binary standards that ensure com-
patibility and thereby prevent problems that
many customers would otherwise encounter.
 Stay tuned for more Star Spec Leads
profiles next month and check out more
details about the Star Spec Leads program
and their success with developing standards
for the Java platform by visiting http://jcp.
org/en/press/news/star.

JSR Watch

by Onno Kluyt

JCP Launches New Program

T

Onno Kluyt is the

director of the JCP

Program Manage-

ment Office, Sun

Microsystems, and

Chair of the JCP.

onno@jcp.org

First constellation of Star Spec Leads takes shape

Massive scalability on minimal hardware

Caché is the first multidimensional database for transaction processing and real-time
analytics. Its post-relational technology combines robust objects and robust SQL, thus
eliminating object-relational mapping. It delivers massive scalability on minimal hardware,
requires little administration, and incorporates a rapid application development environment.

These innovations mean faster time-to-market, lower cost of operations, and higher
application performance. We back these claims with this money-back guarantee: Buy Caché
for new application development, and for up to one year you can return the license for a full
refund if you are unhappy for any reason.* Caché is available for Unix, Linux, Windows, Mac
OS X, and OpenVMS – and it's deployed on more than 100,000 systems ranging from two to
over 50,000 users. We are InterSystems, a global software company with a track record of
innovation for more than 25 years.

No More Object-Relational Mapping.

Rapid development with robust objects Lightning speed with a multidimensional engine

Easy database administration

Try an innovative database for free: Download a fully functional, non-expiring copy of Caché, or request it on CD, at www.InterSystems.com/Cache14P
* Read about our money-back guarantee at the web page shown above.

© 2005 InterSystems Corporation. All rights reserved. InterSystems Caché is a registered trademark of InterSystems Corporation. 7-05 CacheInno14P JDJ

